Pokaż uproszczony rekord

dc.contributor.authorKaczkowski, Zbigniew
dc.contributor.authorFrankiewicz, Piotr
dc.date.accessioned2021-10-25T17:28:46Z
dc.date.available2021-10-25T17:28:46Z
dc.date.issued2017
dc.identifier.citationKaczkowski Z., Frankiewicz P. 2017. Long-term changes in the fish community structure revealed by gillnet monitoring in a shallow, lowland reservoir. Acta Ichthyol. Piscat. 47 (3): 279–288.pl_PL
dc.identifier.issn0137-1592
dc.identifier.urihttp://hdl.handle.net/11089/39548
dc.description.abstractBackground. Fish communities can support or hinder water quality management. Sulejów Reservoir, which is situated on the Pilica River in Central Poland, serves as a strategic reserve of drinking water for the Łódź Agglomeration. Precise knowledge of the long-term dynamics of the structure of the fish community, what was the aim of this study, is important for proper management to slow the eutrophication of the reservoir and prevent toxic algal blooms. Materials and methods. To determine fish species composition, multimesh gill nets with mesh sizes ranging from 11 to 80 mm were used. From 1993 to 2015, gillnetting was conducted 1–2 times per month from June through November in two representative parts of the reservoir, and principal component analysis (PCA) was applied to explore the temporal variation in fish community structure expressed as the relative contribution of each species to the total fish biomass. Results. Dominance fluctuated among four species in the fish community: common bream, Abramis brama (Linnaeus, 1758); roach, Rutilus rutilus (Linnaeus, 1758); white bream, Blicca bjoerkna (Linnaeus, 1758); and pike-perch, Sander lucioperca (Linnaeus, 1758). PCA revealed three principal components with eigenvalues larger than one that explained 73.3% of the observed variance in the temporal changes in fish community composition. A negative correlation was found between pike-perch biomass and roach biomass (r = 0.82), while a positive correlation was observed between the biomass of pike-perch and that of common bream (r = 0.73). Consequently, there was a highly negative correlation between the biomasses of common bream and roach (r = 0.80). Furthermore, an interesting temporal pattern was observed; from 1993 to 2000, the fish community was dominated by common bream and pike-perch but then shifted towards domination by roach and white bream, despite declining phosphorous and carbon concentrations. Recently, this trend has been reversed, and a more balanced fish community structure has been established. Conclusion. Fish community succession, which is usually reported to be a one-directional process in reservoirs, i.e., from a riverine fish or percid-dominated to a cyprinid (bream)-dominated state, was more ambiguous in Sulejów Reservoir. This was likely a consequence of both restoration issues related to decreasing nutrient loads and the influence of zebra mussel, Dreissena polymorpha invasion on the trophic relations in the reservoir.pl_PL
dc.language.isoenpl_PL
dc.publisherZachodniopomorski Uniwersytet Technologiczny w Szczeciniepl_PL
dc.relation.ispartofseriesActa Ichthyologica et Piscatoria;47
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectlowland reservoirpl_PL
dc.subjectroach Rutilus rutiluspl_PL
dc.subjectcommon bream Abramis bramapl_PL
dc.subjectfish community successionpl_PL
dc.subjectzebra mussel Dreissena polymorphapl_PL
dc.titleLong-term changes in fish community structure revealed by gillnet monitoring in a shallow, lowland reservoirpl_PL
dc.typeArticlepl_PL
dc.page.number279-288pl_PL
dc.contributor.authorAffiliationDivision of Applied Ecology, University of Łódź, Łódź, Polandpl_PL
dc.contributor.authorAffiliationDivision of Applied Ecology, University of Łódź, Łódź, Polandpl_PL
dc.identifier.eissn1734-1515
dc.referencesAbraszewska-Kowalczyk A., Jobczyk I., Pazera E. 1999. Zebra mussel Dreissena polymorpha in the Sulejowski Reservoir and the lower Pilica River. Abstracts of the 15th Polish Malacological seminar. Lodz 1999. Folia Malacologica 7 (4): 262.pl_PL
dc.referencesAllan J.D., Abell R., Hogan Z., Revenga C., Taylor B.W., Welcomme R.L., Winemiller K. 2005. Overfishing of inland waters. BioScience 55 (12): 1041–1051. DOI: 10.1641/0006-3568(2005)055[1041:OOIW]2.0.CO;2pl_PL
dc.referencesAndrzejewski W., Mastyński J. 2004. Zbiornik zaporowy Jeziorsko – struktura ichtiofauny. [Jeziorsko dam reservoir—structure of the fish fauna.] Archives of Polish Fisheries 12 (Suppl. 2): 35–42. [In Polish.]pl_PL
dc.referencesBrabrand Å., Faafeng B. 1993. Habitat shift in roach (Rutilus rutilus) induced by pikeperch (Stizostedion lucioperca) introduction: Predation risk versus pelagic behaviour. Oecologia 95 (1): 38–46. DOI: 10.1007/BF00649504pl_PL
dc.referencesCiepłucha M., Kruk A., Zięba G., Marszał L., Błońska D., Tybulczuk S., Tszydel M., Penczak T. 2016. Regeneracja ichtiofauny rzeki Warty: weryfikacja kategorii zagrożenia gatunków ryb. [Recovery of fish fauna in the Warta River: Verification of the threat categories of fish species.] Scientific Annual of the Polish Angling Association 29: 23–41. DOI: 10.12823/sapaa.0860-648X.16002 [In Polish.]pl_PL
dc.referencesColby P.J., Spangler G.R., Hurley D.A., McCombie A.M. 1972. Effects of eutrophication on salmonid communities in oligotrophic lakes. Journal of the Fisheries Research Board of Canada 29 (6): 975–983. DOI: 10.1139/f72-141pl_PL
dc.referencesDe Backer S., Teissier S., Triest L. 2012. Stabilizing the clear-water state in eutrophic ponds after biomanipulation: Submerged vegetation versus fish recolonization. Hydrobiologia 689 (1): 161–176. DOI: 10.1007/s10750-011-0902-2pl_PL
dc.referencesEero M. 2004. Consequences of management of pikeperch (Stizostedion lucioperca L.) stock in Pärnu Bay (Baltic Sea) under two different economic regimes, 1960– 1999. Fisheries Research 68 (1–3): 1–7. DOI: 10.1016/j.fishres.2004.03.002pl_PL
dc.referencesEpler P., Kuboszek A., Łuszczek-Trojnar E., Socha M., Drąg-Kozak E. 2005. The ichthyofauna of the Goczałkowice dam reservoir in southern Poland in the 1986–2001 period. Archives of Polish Fisheries 13 (2): 267–273.pl_PL
dc.referencesFrankiewicz P. 1998. Mechanizmy regulacyjne w obrębie zespołu ryb i ich wpływ, poprzez efekt kaskadowy, na jakości wody w nizinnym zbiorniku zaporowym. [Regulatory mechanisms within the fish community and their influence, through the cascading effect, on water quality in a lowland reservoir.] Uniwersytet Łódzki, Łódź, Poland. [In Polish.]pl_PL
dc.referencesFrankiewicz P., Dabrowski K., Martyniak A., Zalewski M. 1999. Cannibalism as a regulatory force of pikeperch, Stizostedion lucioperca (L.), population dynamics in the lowland Sulejow reservoir (Central Poland). Hydrobiologia 408/409 (0): 47–55. DOI: 10.1023/A:1017001803791pl_PL
dc.referencesFrankiewicz P., Dąbrowski K., Zalewski M. 1996. Mechanism of establishing bimodality in a size distribution of age-0 pikeperch, Stizostedion lucioperca (L.) in the Sulejów Reservoir. Annalles Zoologici Fennici 33 (3–4): 321–327.pl_PL
dc.referencesGido K.B., Matthews W.J., Wolfinbarger W.C. 2000. Long-term change in a reservoir fish assemblage: Stability in an unpredictable environment. Ecological Applications 10 (5): 1517–1529. DOI: 10.2307/2641301pl_PL
dc.referencesGodlewska M., Izydorczyk K., Kaczkowski Z., Jóźwik A., Długoszewski B., Ye S., Lian Y., Guillard J. 2015. Do fish and blue-green algae blooms coexist in space and time? Fisheries Research 173 (1): 93–100. DOI: 10.1016/j.fishres.2015.06.018pl_PL
dc.referencesGołdyn R., Podsiadłowski S., Dondajewska R., Kozak A. 2014. The sustainable restoration of lakes—towards the challenges of the Water Framework Directive. Ecohydrology and Hydrobiology 23 (4): 1201–1209. DOI: 10.1016/j.ecohyd.2013.12.001pl_PL
dc.referencesHorpilla J. 1999. Diel changes in diet composition of an omnivorous cyprinid—a possible source of error in estimating food consumption. Hydrobiologia 400 (0): 33–39. DOI: 10.1023/A:1003746810514pl_PL
dc.referencesHrbaček J. 1984. Ecosystems of the European man-made lakes. Pp. 267–290. In: Taub F.B. (ed.) Ecosystems of the World 23: Lakes and Reservoirs. Elsevier, Amsterdam, the Netherlands.pl_PL
dc.referencesHrbaček J., Albertová O., Desortová B., Gotwaldová V., Popovský J. 1986. Relation of the zooplankton biomass and share of large cladocerans to the concentration of total phosphorus, chlorophyll-a and transparency in Hubenov and Vrchlice reservoirs. Limnologica 17 (2): 301–308.pl_PL
dc.referencesKaczkowski Z., Grabowska J. 2016. Problems and challenges of fish stock management in fresh waters of Poland. Pp. 208–215. In: Craig J.F. (ed.) Freshwater fisheries ecology. Wiley—Blackwell, Oxford, UK.pl_PL
dc.referencesKakareko T. 2001. The diet, growth and condition of common bream, Abramis brama (L.) in Włocławek Reservoir. Acta Ichthyologica et Piscatoria 31 (2): 37– 53. DOI: 10.3750/AIP2001.31.2.04pl_PL
dc.referencesKobak J., Kakareko T., Poznańska M. 2010. Changes in attachment strength and aggregation of zebra mussel, Dreissena polymorpha in the presence of potential fish predators of various species and size. Hydrobiologia 644 (1): 195–206. DOI: 10.1007/s10750-010-0113-2pl_PL
dc.referencesKruk A., Penczak T. 2003. Impoundment impact on populations of facultative riverine fish. Annales de Limnologie—International Journal of Limnology 39 (3): 197–210. DOI: 10.1051/limn/2003016pl_PL
dc.referencesKubečka J. 1993. [Chapter XI] Succession of fish communities in reservoirs of central and eastern Europe. Pp. 153–168. DOI: 10.1007/978-94-017-1096-1_11. In: Straskraba M., Tundisi J.G., Duncan A. (eds.) Comparative reservoir limnology and water quality management. Kluwer Academic Publishers Group, Amsterdam. DOI: 10.1007/978-94-017-1096-1pl_PL
dc.referencesKukuła K. 2003. Structural changes in the ichthyofauna of the Carpathian tributaries of the River Vistula caused by anthropogenic factors. Supplementa ad Acta Hydrobiologica 4: 1–63.pl_PL
dc.referencesLammens E.H.R.R. 1984. A comparison between the feeding of white bream (Blicca bjoerkna) and feeding of bream (Abramis brama). Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 22: 886–890.pl_PL
dc.referencesLammens E.H.R.R. 1989. Causes and consequences of the success of bream in Dutch eutrophic lakes. Hydrobiological Bulletin 23 (1): 11–18. DOI: 10.1007/BF02286423pl_PL
dc.referencesLewandowski K. 2001. Development of populations of Dreissena polymorpha (Pall.) in lakes. Folia Malacologica 9 (4): 171–216.pl_PL
dc.referencesMann R.H.K. 1996. Environmental requirements of European non-salmonid fish in rivers. Hydrobiologia 323 (3): 223–235. DOI: 10.1007/BF00007848pl_PL
dc.referencesMarchowski D., Neubauer G., Ławicki Ł., Woźniczka A., Wysocki D., Guentzel S., Jarzemski M. 2015. The importance of non-native prey, the zebra mussel Dreissena polymorpha, for the declining greater scaup Aythya marila: A case study at a key European staging and wintering site. PLoS ONE. 10 (12): e0145496. DOI: 10.1371/journal.pone.0145496pl_PL
dc.referencesMartyniak A., Jerzyk M.A., Adamek Z. 1987. The food of bream (Abramis brama) in the Pierzchaly Reservoir (Poland). Folia Zoologica 36 (3): 273–280.pl_PL
dc.referencesMehner T. 2010. No empirical evidence for communitywide top-down control of prey fish density and size by fish predators in lakes. Limnology and Oceanography 55 (1): 203–213. DOI: 10.4319/lo.2010.55.1.0203pl_PL
dc.referencesMehner T., Schiller S., Staaks G., Ohlberger J. 2011. Cyclic temperatures influence growth efficiency and biochemical body composition of vertically migrating fish. Freshwater Biology 56 (8): 1554–1566. DOI: 10.1111/j.1365-2427.2011.02594.xpl_PL
dc.referencesMolloy D.P., Karatayev A.Y., Burlakova L.E., Kurandina D.P., Laruelle F. 1997. Natural enemies of zebra mussels: Predators, parasites, and ecological competitors. Reviews in Fisheries Science 5 (1): 27– 97. DOI: 10.1080/10641269709388593pl_PL
dc.referencesNagelkerke L.A.J., Sibbing F.A. 1996. Efficiency of feeding on zebra mussel (Dreissena polymorpha) by common bream (Abramis brama), white bream (Blicca bjoerkna), and roach (Rutilus rutilus): The effects of morphology and behaviour. Canadian Journal of Fisheries and Aquatic Spl_PL
dc.referencesPaulovits G., Ferincz Á., Staszny Á., Weiperth A., Tátrai I., Korponai J., Mátyás K., Kováts N. 2014. Long-term changes in the fish community structure of a shallow eutrophic reservoir (Lake Hídvégi, Hungary), with special reference to the exotic Carassius gibelio. International Review of Hydrobiology 99 (5): 373– 381. DOI: 10.1002/iroh.201301662pl_PL
dc.referencesPersson L. 1986. Effects of reduced interspecific competition on resource utilization in perch (Perca fluviatilis). Ecology 67 (2): 355–364. DOI: 10.2307/1938578pl_PL
dc.referencesPersson A., Hansson L.-A. 1999. Diet shift in fish following competitive release. Canadian Journal of Fisheries and Aquatic Sciences 56 (1): 70–78. DOI: 10.1139/f98-141pl_PL
dc.referencesPiniewski M., Marcinkowski P., Kardel I., Giełczewski M., Izydorczyk K., Frątczak W. 2015. Spatial quantification of non-point source pollution in a mesoscale catchment for an assessment of buffer zones efficiency. Water 7 (5): 1889–1920. DOI: 10.3390/w7051889pl_PL
dc.referencesPivnička K., Švátora M. 1977. Factors affecting the shift in predominance from Eurasian perch (Perca fluviatilis) to roach (Rutilus rutilus) in the Kličava Reservoir, Czechoslovakia. Journal of the Fisheries Research Board of Canada 34 (10): 1571–1575. DOI: 10.1139/f77-220pl_PL
dc.referencesPrejs A. 1978. Eutrofizacja jezior a ichtiofauna. [Eutrophication of lakes and the ichthyofauna.] Wiadomości Ekologiczne 24 (3): 201–208. [In Polish.]pl_PL
dc.referencesPrejs A. 1984. Herbivory by temperate freshwater fishes and its consequences. Environmental Biology of Fishes 10 (4): 281–296. DOI: 10.1007/BF00001481pl_PL
dc.referencesPrejs A., Lewandowski K., Stańczykowska-Piotrowska A. 1990. Size-selective predation by roach (Rutilus rutilus) on zebra mussel (Dreissena polymorpha): Field studies. Oecologia 83 (3): 378–384. DOI: 10.1007/BF00317563pl_PL
dc.referencesPrus P. 2009. The dependencies between the abundance of Chironomus f. l. plumosus and bream (Abramis brama) net catches in a lowland reservoir (Zegrzyński Reservoir, central Poland). Oceanological and Hydrobiological Studies 38 (3): 15–30. DOI: 10.2478/v10009-009-0028-2pl_PL
dc.referencesPsuty I. 2010. Natural, social, economical and political influences on fisheries: A review of the transitional area of the Polish waters of the Vistula Lagoon. Marine Pollution Bulletin 61 (4–6): 162–177. DOI: 10.1016/j.marpolbul.2010.02.010pl_PL
dc.referencesŘíha M., Kubečka J., Vašek M., Seďa J., Mrkvička T., Prchalová M., Matěna J., Hladík M., Čech M., Draštík V., Frouzová J., Hohausová E., Jarolím O., Jůza T., Kratochvíll M., Peterka J., Tušer M. 2009. Long-term development of fish populations in the Římov Reservoir. Fisheries Management and Ecology 16 (2): 121–129. DOI: 10.1111/j.1365-2400.2008.00650.xpl_PL
dc.referencesScharf W. 2008. Development of the fish stock and its manageability in the deep, stratifying Wupper Reservoir. Limnologica 38 (3–4): 248–257. DOI: 10.1016/j.limno.2008.06.003pl_PL
dc.referencesSeďa J., Kubečka J., Brandl Z. 1989. Zooplankton structure and fish population development in the Rimov Reservoir, Czechoslovakia. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 33: 605–609.pl_PL
dc.referencesSpecziár A., Rezsu E.T. 2009. Feeding guilds and food resource partitioning in a lake fish community: An ontogenetic approach. Journal of Fish Biology 75 (1): 247–267. DOI: 10.1111/j.1095-8649.2009.02283.xpl_PL
dc.referencesStańczykowska A., Lewandowski K., Czarnołęski M. 2010. Distribution and densities of Dreissena polymorpha in Poland. Pp. 119–126. In: Van der Velde G., Rajagopal S., Bij de Vaate A. (eds.) Zebra mussels in Europe. Backhuys Publishers, Leiden, the Netherlands.pl_PL
dc.referencesStarmach J., Jelonek M. 2001. Specjalistyczna gospodarka rybacka w zbiornikach wodociągowych. [Specialized fishery management in drinking water reservoirs.] Supplementa ad Acta Hydrobiologica 1: 1–25. [In Polish.]pl_PL
dc.referencesStraškraba M. 1998. Limnological differences between deep valley reservoirs and deep lakes. International Review of Hydrobiology 83 (Special Issue): 1–12.pl_PL
dc.referencesSzlakowski J., Wiśniewolski W. 2001. Biomasa ryb Zbiornika Zegrzyńskiego w aspekcie ich eksploatacji na przykładzie krąpia Blicca bjoerkna (Linneaus, 1758). [Biomass of fish stocks from Zegrzyński Reservoir as a feature of their exploitation, with a reference to white bream stock, Blicca bjoerkna (Linneaus, 1758)]. Supplementa ad Acta Hydrobiologica 1: 67–76. [In Polish.]pl_PL
dc.referencesTargońska K., Żarski D., Kupren K., Palińska-Żarska K., Mamcarz A., Kujawa R., Skrzypczak A., Furgała-Selezniow G., Czarkowski T.K., HakućBłażowska A., Kucharczyk D. 2014. Influence of temperature during four following spawning seasons on the spawning effectiveness of common bream, Abramis brama (L.) under natural and controlled conditions. Journal of Thermal Biology 39: 17–23. DOI: 10.1016/j.jtherbio.2013.11.005pl_PL
dc.referencesTriest L., Stiers I., Van Onsem S. 2016. Biomanipulation as a nature-based solution to reduce cyanobacterial blooms. Aquatic Ecology 50 (3): 461–483. DOI: 10.1007/s10452-015-9548-xpl_PL
dc.referencesvan den Berg C. 1993. Filter-feeding in common bream (Abramis brama), white bream (Blicca bjoerkna) and roach (Rutilus rutilus); structures, functions and ecological significance. PhD Dissertation, Wageningen University, the Netherlands. http://edepot.wur. nl/202827pl_PL
dc.referencesWagner I., Izydorczyk K., Kiedrzyńska E., Mankiewicz-Boczek J., Jurczak T., Bednarek A., Wojtal-Frankiewicz A., Frankiewicz P., Ratajski S., Kaczkowski Z., Zalewski M. 2009. Ecohydrological system solutions to enhance ecosystem services: The Pilica River Demonstration Project. Ecohydrology and Hydrobiology 9 (1): 13–39. DOI: 10.2478/V10104-009-0042-8pl_PL
dc.referencesWiśniewolski W. 2002. Zmiany w składzie ichtiofauny, jej biomasa oraz odłowy w wybranych zbiornikach zaporowych Polski. [Changes in the ichthyofauna composition, biomass and catches in selected Polish dam reservoirs.] Archives of Polish Fisheries 10 (Suppl. 2): 5–73. [In Polish.]pl_PL
dc.referencesWiśniewolski W. 2009. Uwarunkowania i prowadzenie gospodarki rybacko-wędkarskiej w zbiornikach zaporowych. [Conditions for the fisheries and angling management in dam reservoirs.] Scientific Annual of the Polish Angling Association 22: 141–161. [In Polish.]pl_PL
dc.referencesWiśniewolski W., Borzęcka I., Buras P., Szlakowski J., Wołos A. 2004. Odłowy wędkarskie i sieciowe – wzajemne relacje na przykładzie zbiorników zaporowych Zegrzyńskiego i Siemianówki. [Angling and commercial catches—interrelations, exemplified using the Zegrzyński and Siemianówka dam reservoirs.] Archives of Polish Fisheries 12 (Suppl. 2): 127–147. [In Polish.]pl_PL
dc.referencesWojtal A., Frankiewicz P., Izydorczyk K., Zalewski M. 2003. Horizontal migration of zooplankton in a littoral zone of the lowland Sulejów Reservoir (Central Poland). Hydrobiologia 506–509 (1–3): 339–346.pl_PL
dc.referencesWojtal A., Frankiewicz P., Wagner-Łotkowska I., Zalewski M. 2004. The evaluation of the role of pelagic invertebrate versus vertebrate predators on the seasonal dynamics of filtering Cladocera in a shallow, eutrophic reservoir. Hydrobiologia 515 (1–3): 123– 135. DOI: 10.1023/B:HYDR.0000027324.44452.9epl_PL
dc.referencesWojtal-Frankiewicz A., Kruk A., Frankiewicz P., Oleksińska Z., Izydorczyk K. 2015. Long-term patterns in the population dynamics of Daphnia longispina, Leptodora kindtii and Cyanobacteria in a shallow reservoir: A Self-Organising Map (SOM) approach. PLoS ONE 10 (12): e0144109. DOI: 10.1371/journal.pone.0144109pl_PL
dc.referencesWołos A., Piskorski P. 1991. Anglers’ catches as an illustration of the fish community structures, angling pressure and angling regulations based on inland waters in Krosno Region, Poland. Pp. 166–176. In: Cowx I.G. (ed.) Catch effort sampling strategies. Their application in freshwater fisheries management. Fishing New Books, Blackwell Scientific Publications, Oxford, UK.pl_PL
dc.referencesZalewski M. 1998. Ecohydrology and fisheries management. Italian Journal of Zoology 65 (Suppl. 1): 501–506. DOI: 10.1080/11250009809386874pl_PL
dc.contributor.authorEmailzbigniew.kaczkowski@biol.uni.lodz.plpl_PL
dc.identifier.doi10.3750/AIEP/02150
dc.relation.volume3pl_PL
dc.disciplinenauki biologicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe