dc.contributor.author | Michlewska, Sylwia | |
dc.contributor.author | Ionov, Maksim | |
dc.contributor.author | Szwed, Aleksandra | |
dc.contributor.author | Bryszewska, Maria | |
dc.contributor.author | Rogalska, Aneta | |
dc.contributor.author | Sanz del Olmo, Natalia | |
dc.contributor.author | Ortega, Paula | |
dc.contributor.author | Denel-Bobrowska, Marta | |
dc.contributor.author | De la Mata, F. Javier | |
dc.contributor.author | Jacenik, Damian | |
dc.contributor.author | Shcharbin, Dzmitry | |
dc.date.accessioned | 2021-10-22T08:09:54Z | |
dc.date.available | 2021-10-22T08:09:54Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Michlewska S, Ionov M, Szwed A, Rogalska A, Sanz del Olmo N, Ortega P, Denel M, Jacenik D, Shcharbin D, de la Mata FJ, Bryszewska M. Ruthenium Dendrimers against Human Lymphoblastic Leukemia 1301 Cells. International Journal of Molecular Sciences. 2020; 21(11):4119. https://doi.org/10.3390/ijms21114119 | pl_PL |
dc.identifier.issn | 1422-0067 | |
dc.identifier.uri | http://hdl.handle.net/11089/39510 | |
dc.description.abstract | Ruthenium atoms located in the surfaces of carbosilane dendrimers markedly increase their anti-tumor properties. Carbosilane dendrimers have been widely studied as carriers of drugs and genes owing to such characteristic features as monodispersity, stability, and multivalence. The presence of ruthenium in the dendrimer structure enhances their successful use in anti-cancer therapy. In this paper, the activity of dendrimers of generation 1 and 2 against 1301 cells was evaluated using Transmission Electron Microscopy, comet assay and Real Time PCR techniques. Additionally, the level of reactive oxygen species (ROS) and changes of mitochondrial potential values were assessed. The results of the present study show that ruthenium dendrimers significantly decrease the viability of leukemia cells (1301) but show low toxicity to non-cancer cells (peripheral blood mononuclear cells—PBMCs). The in vitro test results indicate that the dendrimers injure the 1301 leukemia cells via the apoptosis pathway. | pl_PL |
dc.description.sponsorship | Funding: This work was co-financed by the Project EUROPARTNER of Polish National Agency for Academic
Exchange (NAWA) and Pl-SK 2019–2020 bilateral project -PPN/BIL/2018/1/00150; supported by the project
“NanoTENDO” granted by National Science Centre, Poland under the M-ERA.NET 2 of Horizon 2020
programme, project No: 685451. This research was also supported by grants from CTQ2017-86224-P (MINECO),
consortiums IMMUNOTHERCAN-CM B2017/BMD-3733, NANODENDMED II-CM ref B2017/BMD-3703 and
Project SBPLY/17/180501/000358 Junta de Comunidades de Castilla-La Mancha (JCCM). CIBER-BBN is an initiative
funded by the VI National R&D&I Plan 2008–2011, IniciativaIngenio 2010, Consolider Program, CIBER Actions
and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.
Acknowledgments: N.S.d.O. wishes to thank JCCM for a predoctoral fellowship. This article is based upon
work from COST Action CA17140 “Cancer Nanomedicine from the Bench to the Bedside” supported by COST(European Cooperation in Science and Technology). | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | MDPI | pl_PL |
dc.relation.ispartofseries | International Journal of Molecular Sciences;21(11) | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | 1301 human lymphoblastic leukemia | pl_PL |
dc.subject | carbosilane dendrimer | pl_PL |
dc.subject | ruthenium | pl_PL |
dc.subject | drug delivery | pl_PL |
dc.subject | cytotoxicity | pl_PL |
dc.title | Ruthenium Dendrimers against Human Lymphoblastic Leukemia 1301 Cells | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 13 | pl_PL |
dc.contributor.authorAffiliation | Laboratory of Microscopic Imaging & Specialized Biological Techniques, Faculty of Biology & Environmental Protection, University of Lodz, 90-237 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of General Biophysics, Faculty of Biology & Environmental Protection, University of Lodz, 90-236 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of General Biophysics, Faculty of Biology & Environmental Protection, University of Lodz, 90-236 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of General Biophysics, Faculty of Biology & Environmental Protection, University of Lodz, 90-236 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of General Biophysics, Faculty of Biology & Environmental Protection, University of Lodz, 90-236 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Medical Biophysics, Faculty of Biology & Protection, University of Lodz, 90-236 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029 Madrid, Spain | pl_PL |
dc.contributor.authorAffiliation | Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029 Madrid, Spain | pl_PL |
dc.contributor.authorAffiliation | Department of Organic Chemistry and Inorganic Chemistry, Research Institute of Chemistry “Andrés M. del Rio (IQAR)”, Institute “Ramón y Cajal” for Health Research (IRYCIS), University of Alcalá, 28805 Madrid, Spain | pl_PL |
dc.contributor.authorAffiliation | Department of Organic Chemistry and Inorganic Chemistry, Research Institute of Chemistry “Andrés M. del Rio (IQAR)”, Institute “Ramón y Cajal” for Health Research (IRYCIS), University of Alcalá, 28805 Madrid, Spain | pl_PL |
dc.contributor.authorAffiliation | Department of Medical Biophysics, Faculty of Biology & Protection, University of Lodz, 90-236 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029 Madrid, Spain | pl_PL |
dc.contributor.authorAffiliation | Department of Organic Chemistry and Inorganic Chemistry, Research Institute of Chemistry “Andrés M. del Rio (IQAR)”, Institute “Ramón y Cajal” for Health Research (IRYCIS), University of Alcalá, 28805 Madrid, Spain | pl_PL |
dc.contributor.authorAffiliation | Department of Cytobiochemistry, Faculty of Biology & Protection, University of Lodz, 90-236 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Institute of Biophysics & Cell Engineering of NASB, 220072 Minsk, Belarus | pl_PL |
dc.references | Metayer, C.; Dahl, G.M.D.; Wiemels, J.; Miller, M. Childhood leukemia: A preventable disease. Pediatrics 2016, 138, 45–55. | pl_PL |
dc.references | Bryant, A.L.; Walton, A.M.L.; Shaw-Kokot, J.; Mayer, D.K.; Reeve, B.B. Patient-reported symptoms and quality of life in adults with acute leukemia: A systematic review. Oncol. Nurs. Forum. 2018, 42, 91–101. | pl_PL |
dc.references | Allemani, C.; Weir, H.K.; Carreira, H.; Spika, D.; Wang, X.S.; Bannon, F.; Ahn, J.V.; Johnson, C.J.; Bonaventure, A.; Marcos-Gragera, R.; et al. Global surveillance of cancer survival 1995–2009: Analysis of individual data for 25 676 887 patients from 279 population based registries in 67 countries (CONCORD-2). Lancet 2015, 385, 977–1010. | pl_PL |
dc.references | Zhang, N.; Li, S.; Hua, H.; Liu, D.; Song, L.; Sun, P.; Huang, W.; Tang, Y.; Zhao, Y.; Li, S.; et al. Low density lipoprotein receptor targeted doxorubicin/DNA-gold nanorods as a chemo- and thermo-dual therapy for prostate cancer. Int. J. Pharm. 2016, 13, 376–386. | pl_PL |
dc.references | Qayed, M.; Wang, T.; Hemmer, M.T.; Spellman, S.; Arora, M.; Couriel, D.; Alousi, A.; Pidala, J.; Abdel-Azim, H.; Aljurf, M.; et al. Influence of age on acute and chronic GVHD in children undergoing HLA-identical sibling bone marrow transplantation for acute leukemia: Implications for prophylaxis. Biol. Blood Marrow Transplant. 2018, 24, 521–528. | pl_PL |
dc.references | 6. Coculova, M.; Imrichova, D.M.; Messingerova, S.L.; Bohacova, V.; Sulova-Breier, A. The expression of P-glycoprotein in leukemia cells is associated withtheupregulated expression of nestin.a class 6 filament protein. Leuk. Res. 2016, 48, 32–39. | pl_PL |
dc.references | Beroukhim, R.; Mermel, C.H.; Porter, D.; Wei, G.; Raychaudhuri, S.; Donovan, J.; Barretina, J.; Boehm, J.S.; Dobson, J.; Urashima, M.; et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010, 463, 899–905. | pl_PL |
dc.references | Wei, G.; Margolin, A.A.; Haery, L.; Brown, E.; Cucolo, L.; Julian, B.; Shehata, S.; Kung, A.L.; Beroukhim, R.; Golub, T.R. Chemical genomics identifies small-molecule MCL1 repressors and BCL-xL as a predictor of MCL1 dependency. Cancer Cell. 2012, 21, 547–562. | pl_PL |
dc.references | Campbelland, K.J.; Tait, S.W.G. Targeting BCL-2 regulated apoptosis in cancer. Open Biol. 2018, 8, 180002. | pl_PL |
dc.references | Wang, H.Y.; Chang, Y.L.; Cheng, C.C.; Chao, M.W.; Lin, S.I.; Pan, S.L.; Hsu, C.C.; Liu, T.W.; Cheng, H.C.; Tseng, C.P.; et al. Glucocorticoids may compromise the effect of gefitinib in non-small cell lung cancer. Oncotarget 2016, 7, 85917–85928. | pl_PL |
dc.references | Michlewska, S.; Ionov, M.; Shcharbin, D.; Maroto-Díaz, M.; Gomez Ramirez, R.; de la Mata, F.J.; Bryszewska, M. Ruthenium metallodendrimers with anticancer potential in an acute promyelocyticleukemia (HL60) cell line. Eur. Polm. J. 2017, 87, 39–47. | pl_PL |
dc.references | Hashemi, M.; Tabatabai, S.M.; Parhiz, H.; Milanizadeh, S.; Farzad, S.A.; Abnous, K.; Ramezani, M. Gene delivery efficiency and cytotoxicity of heterocyclic amine-modified PAMAM and PPI dendrimers. Mater. Sci. Eng. 2016, C61, 791–800. | pl_PL |
dc.references | Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications and properties. Nanoscale Res. Lett. 2014, 9, 247. | pl_PL |
dc.references | Biswas, S.; Torchilin, V.P. Dendrimers for siRNA Delivery. Pharm. Basel. 2013, 2, 161–183 | pl_PL |
dc.references | Maroto-Dıaz, M.; Elie, B.T.; Gomez-Sal, P.; Pérez-Serrano, J.; Gómez, R.; Contel, M.; de la Mata, F.J. Synthesis and anticancer activity of carbosilane metallodendrimers based on arene ruthenium(II) complexes. Dalton Trans. 2016, 45, 7049–7066 | pl_PL |
dc.references | Pereira, F.C.; de Lima, A.P.; Vilanova-Costa, C.A.; Pires, W.C.; Ribeiro, A.; Pereira, L.C.G.; Pavanin, L.A.; dos Santo, W.B.; Silveira-Lacerda, E. Cytotoxic effects of the compound cistetraammine (oxalato) ruthenium(III) dithionate on K-562 human chronic myelogenous leukemia cells. Springer Plus. 2014, 3, 301. | pl_PL |
dc.references | Dragutan, I.; Dragutan, V.; Demonceau, A. Editorial of special issue ruthenium complex: The expanding chemistry of the ruthenium complexes. Molecules 2015, 20, 17244–17274. | pl_PL |
dc.references | Carter, R.; Westhorpe, A.; Romero, M.J.; Habtemariam, A.; Gallevo, C.R.; Bark, Y.; Menezes, N.; Sadler, P.J.; Sharma, R.A. Radiosensitisation of human colorectal cancer cells by ruthenium(II) arene anticancer complexes. Sci. Rep. 2016, 20596, 1–12. | pl_PL |
dc.references | Spreckelmeyer, S.; Orvig, C.; Casini, A. Cellular transport mechanisms of cytotoxic metallodrugs: An overview beyond cisplatin. Molecules 2014, 19, 15584–15610. | pl_PL |
dc.references | Vilanova-Costa, C.A.; Porto, H.K.; Pereira Fde, C.; de Lima, A.P.; Dos Santos, W.B.; Silveira-Lacerda Ede, P. The ruthenium complexes cis-(dichloro)tetramineruthenium(III) chloride and cis-tetraammine(oxalato)ruthenium(III) dithionate overcome resistance inducing apoptosis on human lung carcinoma cells (A549). Biometals 2014, 27, 459–469 | pl_PL |
dc.references | Menjoge, A.R.; Kannan, R.M.; Tomalia, D.A. Dendrimer-based drug and imaging conjugates: Design considerations for nanomedicalapplications. Drug Discov. Today 2010, 15, 171–185 | pl_PL |
dc.references | Michlewska, S.; Kubczak, M.; Maroto-Díaz, M.; Sanz del Olmo, N.; Ortega, P.; Shcharbin, D.; Gomez Ramirez, R.; de la Mata, F.J.; Ionov, M.; Bryszewska, M. Synthesis and characterization of FITC labelled ruthenium dendrimer as a prospective anticancer drug. Biomolecules 2019, 9, 411. | pl_PL |
dc.references | Hołota, M.; Magiera, J.; Michlewska, S.; Kubczak, M.; Sanz del Olmo, N.; Garcia-Gallego, S.; Ortega, P.; de la Mata, F.J.; Ionov, M.; Bryszewska, M. In vitro anticancer properties of copper matallodendrimers. Biomolecules 2011, 9, 155. | pl_PL |
dc.references | Dickerson, M.; Sun, Y.; Howerton, B.; Glazer, E.C. Modifying charge and hydrophilicity of simple Ru(II) polypyridyl complexes radically alters biological activities: Old complexes surprising new tricks. Inorg. Chem. 2014, 53, 10370–10377. | pl_PL |
dc.references | Koceva-Chyla, A.; Matczak, K.; Hikisz, P.; Durka, K.; Kochel, K.; Süss-Fink, G.; Furrer, J.; Kowalski, K. Insights into the in vitro anticancer effects of diruthenium-1. Chem. Med. Chem. 2016, 11, 1–18. | pl_PL |
dc.references | Pedziwiatr-Werbicka, E.; Fuentes, E.; Dzmitruk, V.; Sanchez, J.; Sudas, M.; Drozd, E.; Shakhbazau, A.; Shcharbin, D.; de la Mata, F.J.; Gomez-Ramirez, R.; et al. Novel ‘Si C’ carbosilane dendrimers as carriers for anti-HIV nucleic acids: Studies on complexation and interaction with blood cells. Colloids Surf. B Biointerfaces 2013, 109, 183–189. | pl_PL |
dc.references | Milowska, K.; Szwed, A.; Mutrynowska, M.; Gomez-Ramirez, R.; de la Mata, F.J.; Gabryelak, T.; Bryszewska, M. Carbosilane dendrimers inhibit a-synucleinfibrillation and prevent cells from rotenone-induced damage. Int. J. Pharm. 2015, 484, 268–275 | pl_PL |
dc.references | Solarska-Sciuk, K.; Gajewska, A.; Glinska, S.; Michlewska, S.; Balcerzak, Ł.; Jamrozik, A.; Skolimowski, J.; Burda, K.; Bartosz, G. Effect of functionalized and non-functionalized nanodiamond on the morphology and activities of antioxidant enzymes of lung epithelial cells (549). Chem. Biol. Int. 2014, 222, 135–147. | pl_PL |
dc.references | Studzian, M.; Szulc, A.; Janaszewska, A.; Appelhans, D.; Pulaski, L.; Klajnert-Maculewicz, B. Mechanisms of internalization of maltose-modified poly(propyleneimine) glycodendrimers into leukemic cell lines. Biomacromolecules 2017, 18, 1509–1520. | pl_PL |
dc.references | Barrios-Gumiel, A.; Sánchez-Nieves, J.; Pedziwiatr-Werbicka, E.; Abashkin, V.; Shcharbina, N.; Shcharbin, D.; Gli ´nska, S.; Ciepluch, K.; Kuc-Ciepluch, D.; Lach, D.; et al. Effect of PEGylation on the biological properties of cationic carbosilanedendronized gold nanoparticles. Int. J. Pharm. 2019, 573, 118867. | pl_PL |
dc.references | Michlewska, S.; Ionov, M.; Maroto-Díaz, M.; Szwed, A.; Ihnatsyeu-Kachan, A.; Abashkin, V.; Dzmitruk, V.; Rogalska, A.; Denel, M.; Gapi ´nska, M.; et al. Ruthenium dendrimers against acute promyelocytic leukaemia. In vitro studies on HL-60 cells. Future Med. Chem. 2019, 11, 1741–1756. | pl_PL |
dc.references | Chu, C.; Xu, J.; Cheng, D.; Li, X.; Tong, S.; Yan, J.; Li, Q. Anti-proliferative and apoptosis-inducing effects of camptothecin 20 (S)-O-(2-Pyrazolyl-1) acetic ester in human breast tumor MCF-7 cells. Molecules 2014, 19, 4941–4955. | pl_PL |
dc.references | Dasgupta, A.; Nomura, M.; Shuck, R.; Yustein, J. Cancer’s achilles’ heel: Apoptosis and necroptosis to the rescue. Int. J. Mol. Sci. 2017, 18, 23. | pl_PL |
dc.references | Bae, Y.; Song, S.J.; Mun, J.Y.; Ko, K.S.; Han, J.; Choi, J.S. Apoptin gene delivery by the functionalized polyamidoamine (PAMAM) dendrimer modified with ornithine induces cell death of Hepg 2 cells. Polymers 2017, 9, 197. | pl_PL |
dc.references | Belmar, J.; Fesik, S.W. Small molecule Mcl-1 inhibitors for the treatment of cancer. Pharmacol. Ther. 2015, 145, 76–84. | pl_PL |
dc.references | Hikisz, P.; Szczupak, L.; Koceva-Chyla, A.; Gu´spiel, A.; Oehninger, L.; Ott, I.; Therrien, B.; Solecka, J.; Kowalski, K. Anticancer and antibacterial activity studies of gold(I)-alkynylchromones. Molecules 2015, 20, 19699–19718 | pl_PL |
dc.references | Konopleva, M.; Contractor, R.; Tsao, T.; Samudio, I.; Ruvalo, P.P.; Kitada, S.; Deng, X.M.; Zhai, D.Y.; Shi, Y.X.; Sneed, T.; et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell. 2006, 10, 375–388. | pl_PL |
dc.references | Salvioli, S.; Ardizzoni, A.; Franceschi, C.; Cossarizza, A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: Implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 1997, 411, 77–82. | pl_PL |
dc.references | Singh, N.P.; McCoy, M.T.; Tice, R.R. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 84–91. | pl_PL |
dc.references | Reynolds, S.S. The use of lead citrate of high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 1963, 17, 208–212. | pl_PL |
dc.identifier.doi | 10.3390/ijms21114119 | |
dc.relation.volume | 4119 | pl_PL |
dc.discipline | nauki biologiczne | pl_PL |
dc.discipline | nauki chemiczne | pl_PL |