Pokaż uproszczony rekord

dc.contributor.authorOleksik, Grzegorz
dc.contributor.authorRóżycki, Adam
dc.date.accessioned2021-10-22T06:02:55Z
dc.date.available2021-10-22T06:02:55Z
dc.date.issued2018
dc.identifier.citationOleksik, G., Różycki, A. The Łojasiewicz Exponent at Infinity of Non-negative and Non-degenerate Polynomials. Bull Braz Math Soc, New Series 49, 743–759 (2018). https://doi.org/10.1007/s00574-018-0078-8pl_PL
dc.identifier.issn1678-7544
dc.identifier.urihttp://hdl.handle.net/11089/39501
dc.description.abstractLet f be a real polynomial, non-negative at infinity with non-compact zero-set. Suppose that f is non-degenerate in the Kushnirenko sense at infinity. In this paper we give a formula for the Łojasiewicz exponent at infinity of f and a formula for the exponent of growth of f in terms of its Newton polyhedron.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Naturepl_PL
dc.relation.ispartofseriesBulletin of the Brazilian Mathematical Society, New Series;49
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectKushnirenko nondegeneracypl_PL
dc.subjectNewton polyhedronpl_PL
dc.subjectŁojasiewicz exponentpl_PL
dc.titleThe Łojasiewicz Exponent at Infinity of Non-negative and Non-degenerate Polynomialspl_PL
dc.typeArticlepl_PL
dc.page.number743–759pl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Computer Science, University of Lodz, S. Banacha 22, 90-238, Lodz, Polandpl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Computer Science, University of Lodz, S. Banacha 22, 90-238, Lodz, Polandpl_PL
dc.identifier.eissn1678-7714
dc.referencesBùi, N.T.N., Pham, T.S.: Computation of the Łojasiewicz exponent of nonnegative and nondegenerate analytic functions. Int. J. Math. 25, 1450092 (2014)pl_PL
dc.referencesĐinh, S.T., Hà, H.V., Tháo, N.T.: Łojasiewicz inequality for polynomial functions on non-compact domains. Int. J. Math. 23, 1250033 (2012)pl_PL
dc.referencesĐinh, S.T., Kurdyka, K., Le Gal, O.: Łojasiewicz inequality on non-compact domains and singularities at infinity. Int. J. Math. 24, 1350079 (2013)pl_PL
dc.referencesĐinh, S.T., Hà, H.V., Pham, T.S., Tháo, N.T.: Global Łojasiewicz-type inequality for non-degenerate polynomial maps. J. Math. Anal. Appl. 410, 541–560 (2014)pl_PL
dc.referencesGindikin, S.G.: Energy estimates connected with the Newton polyhedron. (Russian) Collection of articles dedicated to the memory of Ivan Georgievič Petrovskiĭ. Trudy Moskov. Mat. Obšč. 31, 189–236 (1974)pl_PL
dc.referencesGwoździewicz, J.: Growth at infinity of a polynomial with a compact zero set. Banach Cent. Publ. 44, 123–128 (1998)pl_PL
dc.referencesHà, H.V., Duc, N.H.: Łojasiewicz inequality at infinity for polynomials in two real variables. Math. Z. 266, 243–264 (2010)pl_PL
dc.referencesHà, H.V., Ngai, H.V., Pham, T.S.: A global smooth version of the classical Łojasiewicz inequality. J. Math. Anal. Appl. 421, 1559–1572 (2015)pl_PL
dc.referencesHörmander, L.: On the division of distributions by polynomials. Ark. Mat. 3, 555–568 (1958)pl_PL
dc.referencesKollár, J.: Sharp effective Nullstellensatz. J. Am. Math. Soc. 1, 963–975 (1988)pl_PL
dc.referencesŁojasiewicz, S.: Sur le problème de la division. (French). Stud. Math. 18, 87–136 (1959)pl_PL
dc.identifier.doi10.1007/s00574-018-0078-8
dc.subject.msc14P10
dc.disciplinematematykapl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe