Show simple item record

dc.contributor.authorOleksik, Grzegorz
dc.contributor.authorRóżycki, Adam
dc.date.accessioned2021-10-22T06:02:55Z
dc.date.available2021-10-22T06:02:55Z
dc.date.issued2018
dc.identifier.citationOleksik, G., Różycki, A. The Łojasiewicz Exponent at Infinity of Non-negative and Non-degenerate Polynomials. Bull Braz Math Soc, New Series 49, 743–759 (2018). https://doi.org/10.1007/s00574-018-0078-8pl_PL
dc.identifier.issn1678-7544
dc.identifier.urihttp://hdl.handle.net/11089/39501
dc.description.abstractLet f be a real polynomial, non-negative at infinity with non-compact zero-set. Suppose that f is non-degenerate in the Kushnirenko sense at infinity. In this paper we give a formula for the Łojasiewicz exponent at infinity of f and a formula for the exponent of growth of f in terms of its Newton polyhedron.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Naturepl_PL
dc.relation.ispartofseriesBulletin of the Brazilian Mathematical Society, New Series;49
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectKushnirenko nondegeneracypl_PL
dc.subjectNewton polyhedronpl_PL
dc.subjectŁojasiewicz exponentpl_PL
dc.titleThe Łojasiewicz Exponent at Infinity of Non-negative and Non-degenerate Polynomialspl_PL
dc.typeArticlepl_PL
dc.page.number743–759pl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Computer Science, University of Lodz, S. Banacha 22, 90-238, Lodz, Polandpl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Computer Science, University of Lodz, S. Banacha 22, 90-238, Lodz, Polandpl_PL
dc.identifier.eissn1678-7714
dc.referencesBùi, N.T.N., Pham, T.S.: Computation of the Łojasiewicz exponent of nonnegative and nondegenerate analytic functions. Int. J. Math. 25, 1450092 (2014)pl_PL
dc.referencesĐinh, S.T., Hà, H.V., Tháo, N.T.: Łojasiewicz inequality for polynomial functions on non-compact domains. Int. J. Math. 23, 1250033 (2012)pl_PL
dc.referencesĐinh, S.T., Kurdyka, K., Le Gal, O.: Łojasiewicz inequality on non-compact domains and singularities at infinity. Int. J. Math. 24, 1350079 (2013)pl_PL
dc.referencesĐinh, S.T., Hà, H.V., Pham, T.S., Tháo, N.T.: Global Łojasiewicz-type inequality for non-degenerate polynomial maps. J. Math. Anal. Appl. 410, 541–560 (2014)pl_PL
dc.referencesGindikin, S.G.: Energy estimates connected with the Newton polyhedron. (Russian) Collection of articles dedicated to the memory of Ivan Georgievič Petrovskiĭ. Trudy Moskov. Mat. Obšč. 31, 189–236 (1974)pl_PL
dc.referencesGwoździewicz, J.: Growth at infinity of a polynomial with a compact zero set. Banach Cent. Publ. 44, 123–128 (1998)pl_PL
dc.referencesHà, H.V., Duc, N.H.: Łojasiewicz inequality at infinity for polynomials in two real variables. Math. Z. 266, 243–264 (2010)pl_PL
dc.referencesHà, H.V., Ngai, H.V., Pham, T.S.: A global smooth version of the classical Łojasiewicz inequality. J. Math. Anal. Appl. 421, 1559–1572 (2015)pl_PL
dc.referencesHörmander, L.: On the division of distributions by polynomials. Ark. Mat. 3, 555–568 (1958)pl_PL
dc.referencesKollár, J.: Sharp effective Nullstellensatz. J. Am. Math. Soc. 1, 963–975 (1988)pl_PL
dc.referencesŁojasiewicz, S.: Sur le problème de la division. (French). Stud. Math. 18, 87–136 (1959)pl_PL
dc.identifier.doi10.1007/s00574-018-0078-8
dc.subject.msc14P10
dc.disciplinematematykapl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe