dc.contributor.author | Juraniec, Michal | |
dc.contributor.author | Gajda, Błażej | |
dc.date.accessioned | 2021-10-21T11:08:11Z | |
dc.date.available | 2021-10-21T11:08:11Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | JURANIEC, M., & GAJDA, B. (2020). Cellulose biosynthesis in plants - the concerted action of CESA and non-CESA proteins. Biologia plantarum, 64, Article 363-377. https://doi.org/10.32615/bp.2020.065 | pl_PL |
dc.identifier.issn | 0006-3134 | |
dc.identifier.uri | http://hdl.handle.net/11089/39498 | |
dc.description.abstract | Cellulose is the most abundant polysaccharide produced by plants. In the form of rigid microfibrils surrounding the cells,
cellulose constitutes the load-bearing cell wall element that controls cell growth and shape. Cellulose microfibrils are laid
down outside the cell by the multimeric plasma membrane-inserted cellulose synthase complexes (CSCs), which move
along underlying cortical microtubules (CMTs). In plants, CSCs are shaped as rosettes with six lobes symmetrically
arranged in a hexagonal structure. In Arabidopsis, the CSC is composed of at least three functionally non-redundant
cellulose synthase (CESA) glycosyltransferases in both primary and secondary cell walls. The number, organization,
and interactions of CESA proteins within the CSC have been debated for many years on the basis of numerous lines of
evidence provided by electron microscopy, biochemical and genetic approaches, spectroscopic techniques, as well as
computational modeling. The Arabidopsis thaliana model was extremely useful in elucidating the molecular composition
of CSC and enabled to elucidate the specialized functions of distinct AtCESA isoforms. Several additional, non-CESA
proteins involved in cellulose synthesis and its regulation were also identified in Arabidopsis. This review outlines the
latest findings on CSC organization, trafficking, and plant-specific proteins directly associated with the complex and
interconnecting CESAs with CMTs. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Institute of Experimental Botany of the Czech Academy of Sciences | pl_PL |
dc.relation.ispartofseries | Biologia Plantarum;64 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Arabidopsis thaliana | pl_PL |
dc.subject | cellulose microfibrils | pl_PL |
dc.subject | cellulose synthase complex | pl_PL |
dc.subject | cortical microtubules | pl_PL |
dc.subject | membrane proteins | pl_PL |
dc.subject | mutants | pl_PL |
dc.title | Cellulose biosynthesis in plants – the concerted action of CESA and non-CESA proteins | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 363-377 | pl_PL |
dc.contributor.authorAffiliation | Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, PL-90237 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, PL-90237 Lodz, Poland | pl_PL |
dc.identifier.eissn | 1573-8264 | |
dc.references | Amor, Y., Haigler, C.H., Johnson, S., Wainscott, M., Delmer, D.P.: A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. - Proc. nat. Acad. Sci. USA 92: 9353-9357, 1995. | pl_PL |
dc.references | Appenzeller, L., Doblin, M., Barreiro, R., Wang, H., Niu, X., Kollipara, K., Carrigan, L., Tomes, D., Chapman, M., Dhugga, K.S.: Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. - Cellulose 11: 287-299, 2004. | pl_PL |
dc.references | Arioli, T., Peng, L., Betzner, A.S., Burn, J., Wittke, W., Herth, W., Camilleri, C., Höfte, H., Plazinski, J., Birch, R., Cork, A., Glover, J., Redmond, J., Williamson, R.E.: Molecular analysis of cellulose biosynthesis in Arabidopsis. - Science 279: 717- 720, 1998. | pl_PL |
dc.references | Atanassov, I.I., Pittman, J.K., Turner, S.R.: Elucidating the mechanisms of assembly and subunit interaction of the cellulose synthase complex of Arabidopsis secondary cell walls. - J. biol. Chem. 284: 3833-3841, 2009. | pl_PL |
dc.references | Bashline, L., Li, S., Anderson, C.T., Lei, L., Gu, Y.: The endocytosis of cellulose synthase in Arabidopsis is dependent on μ2, a clathrin-mediated endocytosis adaptin. - Plant Physiol. 163: 150-160, 2013. | pl_PL |
dc.references | Bashline, L., Li, S., Zhu, X., Gu, Y.: The TWD40-2 protein and the AP2 complex cooperate in the clathrin-mediated endocytosis of cellulose synthase to regulate cellulose biosynthesis. - Proc. nat. Acad. Sci. USA 112: 12870-12875, 2015. | pl_PL |
dc.references | Benfey, P.N., Linstead, P.J., Roberts, K., Schiefelbein, J.W., Hauser, M.T., Aeschbacher, R.A.: Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. - Development 119: 57-70, 1993. | pl_PL |
dc.references | Birnbaum, K., Shasha, D.E., Wang, J.Y., Jung, J.W., Lambert, G.M., Galbraith, D.W., Benfey, P.N.: A gene expression map of the Arabidopsis root. - Science 302: 1956-1960, 2003. | pl_PL |
dc.references | Bischoff, V., Desprez, T., Mouille, G., Vernhettes, S., Gonneau, M., Höfte, H.: Phytochrome regulation of cellulose synthesis in Arabidopsis. - Curr. Biol. 21: 1822-1827, 2011. | pl_PL |
dc.references | Bowling, A.J., Brown, R.M., Jr.: The cytoplasmic domain of the cellulose-synthesizing complex in vascular plants. - Protoplasma 233: 115-127, 2008. | pl_PL |
dc.references | Bringmann, M., Li, E., Sampathkumar, A., Kocabek, T., Hauser, M.T., Persson, S.: POM-POM2/CELLULOSE SYNTHASE INTERACTING1 is essential for the functional association of cellulose synthase and microtubules in Arabidopsis. - Plant Cell 24: 163-177, 2012. | pl_PL |
dc.references | Brown, D.M., Zeef, L.A.H., Ellis, J., Goodacre, R., Turner, S.R.: Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. - Plant Cell 17: 2281-2295, 2005. | pl_PL |
dc.references | Burton, R.A., Shirley, N.J., King, B.J., Harvey, A.J., Fincher, G.B.: The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. - Plant Physiol. 134: 224-236, 2004. | pl_PL |
dc.references | Caño-Delgado, A., Penfield, S., Smith, C., Catley, M., Bevan, M.: Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. - Plant J. 34: 351- 362, 2003. | pl_PL |
dc.references | Carroll, A., Mansoori, N., Li, S., Lei, L., Vernhettes, S., Visser, R.G., Somerville, C., Gu, Y., Trindade, L.M.: Complexes with mixed primary and secondary cellulose synthases are functional in Arabidopsis plants. - Plant Physiol. 160: 726- 737, 2012. | pl_PL |
dc.references | Carroll, A., Specht, C.D.: Understanding plant cellulose synthases through a comprehensive investigation of the cellulose synthase family sequences. - Front. Plant Sci. 2: 5, 2011. | pl_PL |
dc.references | Chan, J., Calder, G., Fox, S., Lloyd, C.: Cortical microtubule arrays undergo rotary movements in Arabidopsis hypocotyl epidermal cells. - Nat. cell. Biol. 9: 171-175, 2007. | pl_PL |
dc.references | Chan, J., Crowell, E., Eder, M., Calder, G., Bunnewell, S., Findlay, K., Vernhettes, S., Höfte, H., Lloyd, C.: The rotation of cellulose synthase trajectories is microtubule dependent and influences the texture of epidermal cell walls in Arabidopsis hypocotyls. - J. Cell Sci. 123: 3490-3495, 2010. | pl_PL |
dc.references | Chanzy, H., Imada, K., Mollard, A., Vuong, R., Barnoud, F.: Crystallographic aspects of sub-elementary cellulose fibrils occurring in the wall of rose cells cultured in vitro. - Protoplasma 100: 303-316, 1979. | pl_PL |
dc.references | Chanzy, H., Imada, K., Vuong, R.: Electron diffraction from the primary wall of cotton fibers. - Protoplasma 94: 299-306, 1978. | pl_PL |
dc.references | Chen, S., Ehrhardt, D.W., Somerville, C.R.: Mutations of cellulose synthase (CESA1) phosphorylation sites modulate anisotropic cell expansion and bidirectional mobility of cellulose synthase. - Proc. nat. Acad. Sci. USA 107: 17188- 17193, 2010. | pl_PL |
dc.references | Chen, X., Wu, S., Liu, Z., Friml, J.: Environmental and endogenous control of cortical microtubule orientation. - Trends cell. Biol. 26: 409-419, 2016. | pl_PL |
dc.references | Cifuentes, C., Bulone, V., Emons, A.M.: Biosynthesis of callose and cellulose by detergent extracts of tobacco cell membranes and quantification of the polymers synthesized in vitro. - J. integr. Plant Biol. 52: 221-233, 2010. | pl_PL |
dc.references | Crowell, E.F., Bischoff, V., Desprez, T., Rolland, A., Stierhof, Y.D., Schumacher, K., Gonneau, M., Höfte, H., Vernhettes, S.: Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. - Plant Cell 21: 1141-1154, 2009. | pl_PL |
dc.references | Delmer, D.P.: Cellulose biosynthesis: exciting times for a difficult field of study. - Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 245-276, 1999. | pl_PL |
dc.references | Desprez, T., Juraniec, M., Crowell, E.F., Jouy, H., Pochylova, Z., Parcy, F., Höfte, H., Gonneau, M., Vernhettes, S.: Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. - Proc. nat. Acad. Sci. USA 104: 15572-15577, 2007. | pl_PL |
dc.references | Ding, S.Y., Himmel, M.E.: The maize primary cell wall microfibril: a new model derived from direct visualization. - J. Agr. Food Chem. 54: 597-606, 2006. | pl_PL |
dc.references | Djerbi, S., Lindskog, M., Arvestad, L., Sterky, F., Teeri, T.T.: The genome sequence of black cottonwood (Populus trichocarpa) reveals 18 conserved cellulose synthase (CesA) genes. - Planta 221: 739-746, 2005. | pl_PL |
dc.references | Doblin, M.S., Kurek, I., Jacob-Wilk, D., Delmer, D.P.: Cellulose biosynthesis in plants: from genes to rosettes. - Plant Cell Physiol. 43: 1407-1420, 2002. | pl_PL |
dc.references | Donaldson, L.: Cellulose microfibril aggregates and their size variation with cell wall type. - Wood Sci. Technol. 41: 443- 460, 2007. | pl_PL |
dc.references | Endler, A., Kesten, C., Schneider, R., Zhang, Y., Ivakov, A., Froehlich, A., Funke, N., Persson, S.: A mechanism for sustained cellulose synthesis during salt stress. - Cell 162: 1353-1364, 2015. | pl_PL |
dc.references | Eskandari, S., Wright, E.M., Kreman, M., Starace, D.M., Zampighi, G.A.: Structural analysis of cloned plasma membrane proteins by freeze-fracture electron microscopy. - Proc. nat. Acad. Sci. USA 95: 11235-11240, 1998. | pl_PL |
dc.references | Facette, M.R., Shen, Z., Björnsdóttir, F.R., Briggs, S.P., Smith, L.G.: Parallel proteomic and phosphoproteomic analyses of successive stages of maize leaf development. - Plant Cell 25: 2798-2812, 2013. | pl_PL |
dc.references | Fagard, M., Desnos, T., Desprez, T., Goubet, F., Refregier, G., Mouille, G., McCann, M., Rayon, C., Vernhettes, S., Höfte, H.: PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. - Plant Cell 12: 2409-2424, 2000. | pl_PL |
dc.references | Fernandes, A.N., Thomas, L.H., Altaner, C.M., Callow, P., Forsyth, V.T., Apperley, D.C., Kennedy, C.J., Jarvis, M.C.: Nanostructure of cellulose microfibrils in spruce wood. - Proc. nat. Acad. Sci. USA 108: E1195-E1203, 2011. | pl_PL |
dc.references | Gardiner, J.C., Taylor, N.G., Turner, S.R.: Control of cellulose synthase complex localization in developing xylem. - Plant Cell 15: 1740-1748, 2003. | pl_PL |
dc.references | Gonneau, M., Desprez, T., Guillot, A., Vernhettes, S., Höfte, H.: Catalytic subunit stoichiometry within the cellulose synthase complex. - Plant Physiol. 166: 1709-1712, 2014. | pl_PL |
dc.references | Gu, Y., Kaplinsky, N., Bringmann, M., Cobb, A., Carroll, A., Sampathkumar, A., Baskin, T.I., Persson, S., Somerville, C.R.: Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. - Proc. nat. Acad. Sci. USA 107: 12866-12871, 2010. | pl_PL |
dc.references | Gutierrez, R., Lindeboom, J.J., Paredez, A.R., Emons, A.M., Ehrhardt, D.W.: Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. - Nat. Cell Biol. 11: 797-806, 2009. | pl_PL |
dc.references | Ha, M.A., Apperley, D.C., Evans, B.W., Huxham, I.M., Jardine, W.G., Viëtor, R.J., Reis, D., Vian, B., Jarvis, M.C.: Fine structure in cellulose microfibrils: NMR evidence from onion and quince. - Plant J. 16: 183-190, 1998. | pl_PL |
dc.references | Haigler, C.H., Brown, R.M.: Transport of rosettes from the Golgi apparatus to the plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture. - Protoplasma 134: 111-120, 1986. | pl_PL |
dc.references | Hauser, M.T., Morikami, A., Benfey P.N.: Conditional root expansion mutants of Arabidopsis. - Development 121: 1237- 1252, 1995. | pl_PL |
dc.references | Herth, W.: Arrays of plasma-membrane 'rosettes' involved in cellulose microfibril formation of Spirogyra. - Planta 159: 347-356, 1983. | pl_PL |
dc.references | Hill, J.L., Jr., Hammudi, M.B., Tien, M.: The Arabidopsis cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry. - Plant Cell 26: 4834- 4842, 2014. | pl_PL |
dc.references | Hill, J.L., Jr., Hill, A.N., Roberts, A.W., Haigler, C.H., Tien, M.: Domain swaps of Arabidopsis secondary wall cellulose synthases to elucidate their class specificity. - Plant Direct 2: e00061, 2018. | pl_PL |
dc.references | Kennedy, C.J., Cameron, G.J., Šturcová, A., Apperley, D.C., Altaner, C., Wess, T.J., Jarvis, M.C.: Microfibril diameter in celery collenchyma cellulose: X-ray scattering and NMR evidence. - Cellulose 14: 235-246, 2007. | pl_PL |
dc.references | Kerstens, S., Verbelen, J.P.: Cellulose orientation at the surface of the Arabidopsis seedling. Implications for the biomechanics in plant development. - J. Struct. Biol. 144: 262–270, 2003. | pl_PL |
dc.references | Kesten, C., Menna, A., Sánchez-Rodríguez, C.: Regulation of cellulose synthesis in response to stress. - Curr. Opin. Plant Biol. 40: 106-113, 2017. | pl_PL |
dc.references | Kim, W.C., Ko, J.H., Han, K.H.: Identification of a cisacting regulatory motif recognized by MYB46, a master transcriptional regulator of secondary wall biosynthesis. - Plant mol. Biol. 78: 489-501, 2012. | pl_PL |
dc.references | Kim, W.C., Ko, J.H., Kim, J.Y., Kim, J., Bae, H.J., Han, K.H.: MYB46 directly regulates the gene expression of secondary wall-associated cellulose synthases in Arabidopsis. - Plant J. 73: 26-36, 2013. | pl_PL |
dc.references | Kim, W.C., Ko, J.H., Kim, J.Y., Kim, J., Bae, H.J., Han, K.H.: MYB46 directly regulates the gene expression of secondary wall-associated cellulose synthases in Arabidopsis. - Plant J. 73: 26-36, 2013. | pl_PL |
dc.references | Kimura, S., Laosinchai, W., Itoh, T., Cui, X., Linder, C.R., Brown, R.M.: Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. - Plant Cell 11: 2075-2086, 1999. | pl_PL |
dc.references | Ko, J.H., Kim, W.C., Han, K.H.: Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. - Plant J. 60: 649-665, 2009. | pl_PL |
dc.references | Kudlicka, K., Brown, R.M. Jr.: Cellulose and callose biosynthesis in higher plants. I. solubilization and separation of (1→3)- and (1→4)-β-glucan synthase activities from mung bean. - Plant Physiol. 115: 643-656, 1997. | pl_PL |
dc.references | Kurek, I., Kawagoe, Y., Jacob-Wilk, D., Doblin, M., Delmer D.: Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. - Proc. nat. Acad. Sci. USA 99: 11109-11114, 2002. | pl_PL |
dc.references | Lai-Kee-Him, J., Chanzy, H., Müller, M., Putaux, J.L., Imai, T., Bulone, V.: In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: structural differences. - J. biol. Chem. 277: 36931-36939, 2002. | pl_PL |
dc.references | Lane, D.R., Wiedemeier, A., Peng, L., Höfte, H., Vernhettes, S., Desprez, T., Hocart, C.H., Birch, R.J., Baskin, T.I., Burn, J.E., Arioli, T., Betzner, A.S., Williamson, R.E.: Temperaturesensitive alleles of RSW2 link the KORRIGAN endo1,4-β-glucanase to cellulose synthesis and cytokinesis in Arabidopsis. - Plant Physiol. 126: 278-288, 2001. | pl_PL |
dc.references | Lei, L., Li, S., Gu, Y.: Cellulose synthase interactive protein 1 (CSI1) mediates the intimate relationship between cellulose microfibrils and cortical microtubules. - Plant Signal. Behav. 7: 1-5, 2012. | pl_PL |
dc.references | Lei, L., Singh, A., Bashline, L., Shundai, Li., Yingling, Y.G., Gu, Y.: CELLULOSE SYNTHASE INTERACTIVE1 is required for fast recycling of cellulose synthase complexes to the plasma membrane in Arabidopsis. - Plant Cell 27: 2926-2940, 2015. | pl_PL |
dc.references | Lertpiriyapong, K., Sung, Z.R.: The elongation defective1 mutant of Arabidopsis is impaired in the gene encoding a serine-rich protein. - Plant mol. Biol. 53: 581-595, 2003. | pl_PL |
dc.references | Li, S., Lei, L., Gu, Y.: Functional analysis of complexes with mixed primary and secondary cellulose synthases. - Plant Signal. Behav. 8: e23179, 2013. | pl_PL |
dc.references | Li, S., Lei, L., Somerville, C.R., Gu, Y.: Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. - Proc. nat. Acad. Sci. USA 109: 185- 190, 2012. | pl_PL |
dc.references | Lin, F.C., Brown, R.M., Jr., Drake, R.R., Jr., Haley, B.E.: Identification of the uridine 5'-diphosphoglucose (UDP-Glc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc. - J. biol. Chem. 265: 4782-4784, 1990. | pl_PL |
dc.references | Little, A., Schwerdt, J.G., Shirley, N.J., Khor, S.F., Neumann, K., O’Donovan, L.A., Lahnstein, J., Collins, H.M., Henderson, M., Fincher, G.B., Burton, R.A.: Revised phylogeny of the cellulose synthase gene superfamily: insights into cell wall evolution. - Plant Physiol. 177: 1124-1141, 2018. | pl_PL |
dc.references | Liu, Z., Schneider, R., Kesten, C., Zhang, Y., Somssich, M., Zhang, Y., Fernie, A.R., Persson, S.: Cellulose-microtubule uncoupling proteins prevent lateral displacement of microtubules during cellulose synthesis in Arabidopsis. - Dev. Cell 38: 305-315, 2016. | pl_PL |
dc.references | Mansoori, N., Timmers, J., Desprez, T., Kamei, C.L.A., Dees, D.C.T., Vincken, J.P., Visser, R.G.F., Hofte, H., Vernhettes, S., Trindade, L.M.: KORRIGAN1 interacts specifically with integral components of the cellulose synthase machinery. - Plos ONE 9: e112387, 2014. | pl_PL |
dc.references | McCarthy, R.L., Zhong, R., Ye, Z.H.: MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. - Plant Cell Physiol. 50: 1950-1964, 2009. | pl_PL |
dc.references | Miart, F., Desprez, T., Biot, E., Morin, H., Belcram, K., Höfte, H., Gonneau, M., Vernhettes, S.: Spatio-temporal analysis of cellulose synthesis during cell plate formation in Arabidopsis. - Plant J. 77: 71-84, 2014. | pl_PL |
dc.references | Morgan, J.L., Strumillo, J., Zimmer, J.: Crystallographic snapshot of cellulose synthesis and membrane translocation. - Nature 493: 181-186, 2013. | pl_PL |
dc.references | Mølhøj, M., Ulvskov, P., Dal Degan, F.: Characterization of a functional soluble form of a Brassica napus membraneanchored endo-1,4-β-glucanase heterologously expressed in Pichia pastoris. - Plant Physiol. 127: 674-684, 2001. | pl_PL |
dc.references | Mueller, S.C., Brown, R.M.: Evidence for an intramembrane component associated with a cellulose microfibrilsynthesizing complex in higher plants. - J. Cell Biol. 84: 315- 326, 1980. | pl_PL |
dc.references | Nairn, C.J., Haselkorn, T.: Three loblolly pine CesA genes expressed in developing xylem are orthologous to secondary cell wall CesA genes of angiosperms. - New Phytol. 166: 907- 915, 2005. | pl_PL |
dc.references | Nakagami, H., Sugiyama, N., Mochida, K., Daudi, A., Yoshida, Y., Toyoda, T., Tomita, M., Ishihama, Y., Shirasu, K.: Largescale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. - Plant Physiol. 153: 1161- 1174, 2010. | pl_PL |
dc.references | Newman, R.H., Hill, S.J., Harris, P.J.: Wide-angle X-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. - Plant Physiol. 163: 1558-1567, 2013. | pl_PL |
dc.references | Nicol, F., His, I., Jauneau, A., Vernhettes, S., Canut, H., Höfte, H.: A plasma membrane-bound putative endo-1,4-β-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. - EMBO J. 17: 5563-5576, 1998. | pl_PL |
dc.references | Nixon, B.T., Mansouri, K., Singh, A., Du, J., Davis, J.K., Lee, J.G., Slabaugh, E., Vandavasi, V.G., O’Neill, H., Roberts, E.M., Roberts, A.W., Yingling, Y.G., Haigler, C.H.: Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex. - Sci. Rep. 6: 28696, 2016. | pl_PL |
dc.references | Nobles, D.R., Romanovicz, D.K., Brown, R.M., Jr.: Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase? - Plant Physiol. 127: 529-542, 2001. | pl_PL |
dc.references | Nühse, T.S., Stensballe, A., Jensen, O.N., Peck, S.C.: Largescale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. - Mol. Cell. Proteomics 2: 1234-1243, 2003. | pl_PL |
dc.references | Oehme, D.P., Downton, M.T., Doblin, M.S., Wagner, J., Gidley, M.J., Bacic, A.: Unique aspects of the structure and dynamics of elementary Iβ cellulose microfibrils revealed by computational simulations. - Plant Physiol. 168: 3-17, 2015. | pl_PL |
dc.references | Pagant, S., Bichet, A., Sugimoto, K., Lerouxel, O., Desprez, T., McCann, M., Lerouge, P., Vernhettes, S., Höfte, H.: KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis. - Plant Cell 14: 2001-2013, 2002. | pl_PL |
dc.references | Paredez, A.R., Persson, S., Ehrhardt, D.W., Somerville, C.R.: Genetic evidence that cellulose synthase activity influences microtubule cortical array organization. - Plant Physiol. 147: 1723-1434, 2008. | pl_PL |
dc.references | Paredez, A.R., Somerville, C.R., Ehrhardt, D.W.: Visualization of cellulose synthase demonstrates functional association with microtubules. - Science 312: 1491-1495, 2006. | pl_PL |
dc.references | Pear, J.R., Kawagoe, Y., Schreckengost, W.E., Delmer, D.P., Stalker D.M.: Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. - Proc. nat. Acad. Sci. USA 93: 12637-12642, 1996. | pl_PL |
dc.references | Peng, L., Xiang, F., Roberts, E., Kawagoe, Y., Greve, L.C., Kreuz, K., Delmer, D.P.: The experimental herbicide CGA 325'615 inhibits synthesis of crystalline cellulose and causes accumulation of non-crystalline β-1,4-glucan associated with CesA protein. - Plant Physiol. 126: 981-992, 2001. | pl_PL |
dc.references | Peng, L., Zhang, L., Cheng, X., Fan, L.S., Hao, H.Q.: Disruption of cellulose synthesis by 2,6-dichlorobenzonitrile affects the structure of the cytoskeleton and cell wall construction in Arabidopsis. - Plant Biol. 15: 405-414, 2013. | pl_PL |
dc.references | Persson, S., Paredez, A., Carroll, A., Palsdottir, H., Doblin, M., Poindexter, P., Khitrov, N., Auer, M., Somerville, CR.: Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. - Proc. natl. Acad. Sci. USA 104: 15566-15571, 2007. | pl_PL |
dc.references | Persson, S., Wei, H., Milne, J., Page, G.P., Somerville, C.R.: Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. - Proc. nat. Acad. Sci. USA 102: 8633-8638, 2005. | pl_PL |
dc.references | Polko, J.K., Kieber, J.J.: The regulation of cellulose biosynthesis in plants. - Plant Cell 31: 282-296, 2019. | pl_PL |
dc.references | Ranik, M., Myburg. A.A.: Six new cellulose synthase genes from Eucalyptus are associated with primary and secondary cell wall biosynthesis. - Tree Physiol. 26: 545-556, 2006. | pl_PL |
dc.references | Richmond, T.A., Somerville, C.R.: The cellulose synthase superfamily. - Plant Physiol. 124: 495-498, 2000. | pl_PL |
dc.references | Robert, S., Bichet, A., Grandjean, O., Kierzkowski, K., SatiatJeunemaître, B., Pelletier, S., Hauser, M.T., Höfte, H., Vernhettes, S.: An Arabidopsis endo-1,4-β-D-glucanase involved in cellulose synthesis undergoes regulated intracellular cycling. - Plant Cell 17: 3378-3389, 2005. | pl_PL |
dc.references | Roberts, A.W., Bushoven, J.T.: The cellulose synthase (CESA) gene superfamily of the moss Physcomitrella patens. - Plant mol. Biol. 63: 207-219, 2007. | pl_PL |
dc.references | Roberts, A.W., Roberts, E.M.: Evolution of the cellulose synthase (CesA) gene family: insights from green algae and seedless plants. In: Brown, R.M., Saxena, I.M. (ed.): Cellulose:Mmolecular and Structural Biology. Pp. 17-34. Springer, Dordrecht 2007. | pl_PL |
dc.references | Roberts, E.M., Roberts, A.W.: A cellulose synthase (CESA) gene from the red alga Porphyra yezoensis (Rhodophyta). - J. Phycol. 45: 203-212, 2009. | pl_PL |
dc.references | Ross, P., Mayer, R., Benziman, M.: Cellulose biosynthesis and function in bacteria. - Microbiol. Rev. 55: 35-58, 1991. | pl_PL |
dc.references | Roudier, F., Fernandez, A.G., Fujita, M., Himmelspach, R., Borner, G.H., Schindelman, G., Song, S., Baskin, T.I., Dupree, P., Wasteneys, G.O., Benfey, P.N.: COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. - Plant Cell 17: 1749-1763, 2005. | pl_PL |
dc.references | Sánchez-Rodríguez, C., Bauer, S., Hématy, K., Saxe, F., Ibáñez, A.B., Vodermaier, V., Konlechner, C., Sampathkumar, A., Rüggeberg, M., Aichinger, E., Neumetzler, L., Burgert, I., Somerville, C., Hauser, M.T., Persson, S.: CHITINASELIKE1/POM-POM1 and its homolog CTL2 are glucaninteracting proteins important for cellulose biosynthesis in Arabidopsis. - Plant Cell 24: 589-607, 2012. | pl_PL |
dc.references | Satiat-Jeunemaitre, B.: Spatial and temporal regulations in helicoidal extracellular matrices: comparison between plant and animal systems. - Tissue Cell 24: 315-334, 1992. | pl_PL |
dc.references | Saxena, I.M., Brown, R.M., Jr.: Identification of cellulose synthase(s) in higher plants: sequence analysis of processive β-glycosyltransferases with the common motif ’D, D, D35Q(R,Q)XRW‘. - Cellulose 4: 33-49, 1997. | pl_PL |
dc.references | Saxena, I.M., Lin, F.C., Brown, R.M. Jr.: Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. - Plant mol. Biol. 15: 673-683, 1990. | pl_PL |
dc.references | Scheible, W.R., Eshed, R., Richmond, T., Delmer, D., Somerville, C.: Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. - Proc. nat. Acad. Sci. USA 98: 10079-10084, 2001. | pl_PL |
dc.references | Schindelman, G., Morikami, A., Jung, J., Baskin, T.I., Carpita, N.C., Derbyshire, P., McCann, M.C., Benfey, P.N.: COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. - Genes Dev. 15: 1115-1127, 2001. | pl_PL |
dc.references | Sethaphong, L., Davis, J.K., Slabaugh, E., Singh, A., Haigler, C.H.: Prediction of the structures of the plant-specific regions of vascular plant cellulose synthases and correlated functional analysis. - Cellulose 23: 145-161, 2016. | pl_PL |
dc.references | Sethaphong, L., Haigler, C.H., Kubicki, J.D., Zimmer, J., Bonetta, D., De Bolt, S., Yingling, Y.G.: Tertiary model of a plant cellulose synthase. - Proc. nat. Acad. Sci. USA 110: 7512-7517, 2013. | pl_PL |
dc.references | Shaw, S.L., Kamyar, R., Ehrhardt, D.W.: Sustained microtubule treadmilling in Arabidopsis cortical arrays. - Science 300: 1715-1718, 2003. | pl_PL |
dc.references | Slabaugh, E., Davis, J.K., Haigler, C.H., Yingling, Y.G., Zimmer, J.: Cellulose synthases: new insights from crystallography and modeling. - Trends Plant Sci. 19: 99-106, 2014. | pl_PL |
dc.references | Speicher, T.L., Li, P.Z., Wallace, I.S.: Phosphoregulation of the plant cellulose synthase complex and cellulose synthase-like proteins. - Plants (Basel) 7: 52, 2018. | pl_PL |
dc.references | Sullivan, S., Ralet, M.C., Berger, A., Diatloff, E., Bischoff, V., Gonneau, M., Marion-Poll, A., North, H.M.: CESA5 is required for the synthesis of cellulose with a role in structuring the adherent mucilage of Arabidopsis seeds. - Plant Physiol. 156: 1725-1739, 2011. | pl_PL |
dc.references | Szyjanowicz, P.M., McKinnon, I., Taylor, N.G., Gardiner, J., Jarvis, M.C., Turner, S.R.: The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. - Plant J. 37: 730-740, 2004. | pl_PL |
dc.references | Tanaka, K., Murata, K., Yamazaki, M., Onosato, K., Miyao, A., Hirochika, H.: Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. - Plant Physiol. 133: 73-83, 2003. | pl_PL |
dc.references | Taylor, N.G.: Identification of cellulose synthase AtCesA7 (IRX3) in vivo phosphorylation sites – a potential role in regulating protein degradation. - Plant mol. Biol. 64: 161-171, 2007. | pl_PL |
dc.references | Taylor, N.G., Howells, R.M., Huttly, A.K., Vickers, K., Turner, S.R.: Interactions among three distinct CesA proteins essential for cellulose synthesis. - Proc. nat. Acad. Sci. USA 100: 1450- 1455, 2003. | pl_PL |
dc.references | Thomas, L.H., Forsyth, V.T., Sturcová, A., Kennedy, C.J., May, R.P., Altaner, C.M., Apperley, D.C., Wess, T.J., Jarvis, M.C.: Structure of cellulose microfibrils in primary cell walls from collenchyma. - Plant Physiol. 161: 465-476, 2013. | pl_PL |
dc.references | Timmers, J., Vernhettes, S., Desprez, T., Vincken, J.P., Visser, R.G., Trindade, L.M.: Interactions between membrane-bound cellulose synthases involved in the synthesis of the secondary cell wall. - FEBS Lett. 583: 978-982, 2009. | pl_PL |
dc.references | Tsekos, I.: The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes. - J. Phycol. 35: 635-655, 1999. | pl_PL |
dc.references | Turner, S.R., Somerville, C.R.: Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. - Plant Cell 9: 689-701, 1997. | pl_PL |
dc.references | Vain, T., Crowell, E.F., Timpano, H., Biot, E., Desprez, T., Mansoori, N., Trindade, L.M., Pagant, S., Robert, S., Höfte, H., Gonneau, M., Vernhettes, S.: The cellulase KORRIGAN is part of the cellulose synthase complex. - Plant Physiol. 165: 1521-1532, 2014. | pl_PL |
dc.references | Vandavasi, V.G., Putnam, D.K., Zhang, Q., Petridis, L., Heller, W.T., Nixon, B.T., Haigler, C.H., Kalluri, U., Coates, L., Langan, P., Smith, J.C., Meiler, J., O'Neill, H.: A structural study of CESA1 catalytic domain of Arabidopsis cellulose synthesis complex: evidence for CESA trimers. - Plant Physiol. 170: 123-135, 2016. | pl_PL |
dc.references | Vanholme, B., Desmet, T., Ronsse, F., Rabaey, K., Van Breusegem, F., De Mey, M., Soetaert, W., Boerjan, W.: Towards a carbonnegative sustainable bio-based economy. - Front. Plant Sci. 4: 174, 2013. | pl_PL |
dc.references | Vergara, C.E., Carpita, N.C.: β-D-glycan synthases and the CesA gene family: lessons to be learned from the mixed-linkage (1→3),(1→4)β-D-glucan synthase. - Plant mol. Biol. 47: 145- 160, 2001. | pl_PL |
dc.references | Viëtor, R.J., Newman, R.H., Ha, M.A., Apperley, D.C., Jarvis, M.C.: Conformational features of crystal-surface cellulose from higher plants. - Plant J. 30: 721-731, 2002. | pl_PL |
dc.references | Wang, J., Elliott, J.E., Williamson, R.E.: Features of the primary wall CESA complex in wild type and cellulose-deficient mutants of Arabidopsis thaliana. - J. exp. Bot. 59: 2627-2637, 2008. | pl_PL |
dc.references | Wang, J., Howles, P.A., Cork, A.H., Birch, R.J., Williamson, R.E.: Chimeric proteins suggest that the catalytic and/or C-terminal domains give CesA1 and CesA3 access to their specific sites in the cellulose synthase of primary walls. - Plant Physiol. 142: 685-695, 2006. | pl_PL |
dc.references | Wang, C., Li, J., Yuan, M.: Salt tolerance requires cortical microtubule reorganization in Arabidopsis. - Plant Cell Physiol. 48: 1534-1547, 2007. | pl_PL |
dc.references | Wang, T., McFarlane, H.E., Persson, S.: The impact of abiotic factors on cellulose synthesis. - J. exp. Bot. 67: 543-552, 2016. | pl_PL |
dc.references | Watanabe, Y., Meents, M.J., McDonnell, L.M., Barkwill, S., Sampathkumar, A., Cartwright, H.N., Demura, T., Ehrhardt, D.W., Samuels, A.L., Mansfield, S.D.: Visualization of cellulose synthases in Arabidopsis secondary cell walls. - Science 350: 198-203, 2015. | pl_PL |
dc.references | Wightman, R., Turner, S.: Trafficking of the plant cellulose synthase complex. - Plant Physiol. 153: 427-432, 2010. | pl_PL |
dc.references | Wong, H.C., Fear, A.L., Calhoon, R.D., Eichinger, G.H., Mayer, R., Amikam, D., Benziman, M., Gelfand, D.H., Meade, J.H., Emerick, A.W., Bruner, R., Ben-Bassat, A., Tal, R.: Genetic organization of the cellulose synthase operon in Acetobacter xylinum. - Proc. nat. Acad. Sci. USA 87: 8130-8134, 1990. | pl_PL |
dc.references | Xie, L., Yang, C., Wang, X.: Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. - J. exp. Bot. 62: 4495-4506, 2011. | pl_PL |
dc.references | Zhang, T., Mahgsoudy-Louyeh, S., Tittmann, B., Cosgrove, D.J.: Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. - Cellulose 21: 853- 862, 2014. | pl_PL |
dc.references | Zhang, Y., Nikolovski, N., Sorieul, M., Vellosillo, T., McFarlane, H.E., Dupree, R., Kesten, C., Schneider, R., Driemeier, C., Lathe, R., Lampugnani, E., Yu, X., Ivakov, A., Doblin, M.S., Mortimer, J.C., Brown, S.P., Persson, S., Dupree, P.: Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis. - Nat. Commun. 7: 11656, 2016. | pl_PL |
dc.references | Zhong, R., Lee, C., Ye, Z.H.: Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. - Trends Plant Sci. 15: 625-632, 2010. | pl_PL |
dc.references | Zhong, R., Ye, Z.H.: MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. - Plant Cell Physiol. 53: 368-380, 2012. | pl_PL |
dc.references | Zhu, X., Li, S., Pan, S., Xin, X., Gu, Y.: CSI1, PATROL1, and exocyst complex cooperate in delivery of cellulose synthase complexes to the plasma membrane. - Proc. nat. Acad. Sci. USA 115: E3578-E3587, 2018. | pl_PL |
dc.references | Zuo, J., Niu, Q.W., Nishizawa, N., Wu, Y., Kost, B., Chua, N.H.: KORRIGAN, an Arabidopsis endo-1,4-beta-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis. - Plant Cell 12: 1137-1152, 2000. | pl_PL |
dc.contributor.authorEmail | michal.juraniec@biol.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.32615/bp.2020.065 | |
dc.discipline | nauki biologiczne | pl_PL |