dc.contributor.author | Łojewska, Ewelina | |
dc.contributor.author | Sakowicz, Tomasz | |
dc.contributor.author | Kowalczyk, Aleksandra | |
dc.contributor.author | Konieczka, Magdalena | |
dc.contributor.author | Grzegorczyk, Janina | |
dc.contributor.author | Sitarek, Przemysław | |
dc.contributor.author | Skała, Ewa | |
dc.contributor.author | Czarny, Piotr | |
dc.contributor.author | Śliwiński, Tomasz | |
dc.contributor.author | Kowalczyk, Tomasz | |
dc.date.accessioned | 2021-10-15T09:48:35Z | |
dc.date.available | 2021-10-15T09:48:35Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Łojewska, E., Sakowicz, T., Kowalczyk, A. et al. Production of recombinant colicin M in Nicotiana tabacum plants and its antimicrobial activity. Plant Biotechnol Rep 14, 33–43 (2020). https://doi.org/10.1007/s11816-019-00571-y | pl_PL |
dc.identifier.issn | 1863-5466 | |
dc.identifier.uri | http://hdl.handle.net/11089/39395 | |
dc.description.abstract | Antibiotic-resistant microorganisms causing a life-threatening infection pose a serious challenge for modern science. The rapidly growing number of incidents for which the use of standard antibiotics is ineffective forces us to develop new alternative methods of killing microorganisms. Antimicrobial proteins and peptides (AMPs) can be promising candidates to solve this problem. Colicin-M is one of the representatives of this group and is naturally produced by Escherichia coli acting on other closely related bacterial strains by disrupting their outer cell membrane. This bacteriocin has huge potential as a potent antimicrobial agent, especially, since it was recognized by the FDA as safe. In this work, we present the expression of colicin M in model transgenic Nicotiana tabacum L. plants. We demonstrate that purified colicin retains its antibacterial activity against the control Escherichia coli strains and clinical isolates of Escherichia coli and Klebsiella pneumoniae. Our results also show that plant-derived ColM is not toxic for L929 and HeLa cell line, which allows us to suppose that plant-based expression could be an alternative production method of such important proteins. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer Nature | pl_PL |
dc.relation.ispartofseries | Plant Biotechnology Reports;14 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Plant-derived recombinant protein | pl_PL |
dc.subject | Plant expression systems | pl_PL |
dc.subject | Bacteriocins | pl_PL |
dc.subject | Colicin M | pl_PL |
dc.subject | Nicotiana tabacum | pl_PL |
dc.title | Production of recombinant colicin M in Nicotiana tabacum plants and its antimicrobial activity | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 33–43 | pl_PL |
dc.contributor.authorAffiliation | Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Microbial Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha12/16, 90-237, Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego 1, 90-151, Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego 1, 90-151, Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland | pl_PL |
dc.identifier.eissn | 1863-5474 | |
dc.references | Ahmad V, Khan MS, Jamal QMS, Alzohairy MA, Al Karaawi MA, Siddiqui MU (2017) Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. Int J Antimicrob Agents 49(1): 1–11. 10.1016/j.ijantimicag.2016.08.016 | pl_PL |
dc.references | Arthur TD, Cavera VL, Chikindas ML (2014) On bacteriocin delivery systems and potential applications. Future Microbiol 9(2):235–248. https://doi.org/10.2217/fmb.13.148 | pl_PL |
dc.references | Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:12. https://doi.org/10.3390/ph6121543 | pl_PL |
dc.references | Bimboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7(6):1513–1523. https://doi.org/10.1093/nar/7.6.1513 | pl_PL |
dc.references | Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3 | pl_PL |
dc.references | Budič M, Rijavec M, Petkovšek Ž, Žgur-Bertok D (2011) Escherichia coli bacteriocins: antimicrobial efficacy and prevalence among isolates from patients with bacteraemia. PLoS ONE 6(12):e28769 | pl_PL |
dc.references | Bundó M, Montesinos L, Izquierdo E, Campo S, Mieulet D, Guiderdoni E et al (2014) Production of cecropin A antimicrobial peptide in rice seed endosperm. BMC Plant biol 14(1):102 | pl_PL |
dc.references | Cavera VL, Arthur TD, Kashtanov D, Chikindas ML (2015) Bacteriocins and their position in the next wave of conventional antibiotics. Int J Antimicrob Agents 46(5):494–501. https://doi.org/10.1016/j.ijantimicag.2015.07.011 | pl_PL |
dc.references | Chahardoli M, Fazeli A, Niazi A, Ghabooli M (2018) Recombinant expression of LFchimera antimicrobial peptide in a plant-based expression system and its antimicrobial activity against clinical and phytopathogenic bacteria. Biotechnol Biotechnol Equip 32(3):714–723. https://doi.org/10.1080/13102818.2018.1451780 | pl_PL |
dc.references | Chen L, Todd R, Kiehlbauch J, Walters M, Kallen A (2017) Notes from the field: pan-resistant New Delhi metallo-beta-lactamase-producing klebsiella pneumonia—Washoe County, Nevada, 2016. MMWR Morb Mortal Wkly Rep 66(1):33. https://doi.org/10.15585/mmwr.mm6601a7 | pl_PL |
dc.references | Chen Q, Dent M, Mason H (2018) Molecular pharming: plant-made vaccines. Applications, Challenges and Emerging Areas, Molecular Pharming, p 231 | pl_PL |
dc.references | Chong DK, Langridge WH (2000) Expression of full-length bioactive antimicrobial human lactoferrin in potato plants. Transgenic Res 9(1):71–78 | pl_PL |
dc.references | Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: Safe, natural antimicrobials for food preservation. Int J Food Microbiol 71(1):1–20. https://doi.org/10.1016/S0168-1605(01)00560-8 | pl_PL |
dc.references | Company N, Nadal A, La Paz JL, Martínez S, Rasche S, Schillberg S et al (2014) The production of recombinant cationic α-helical antimicrobial peptides in plant cells induces the formation of protein bodies derived from the endoplasmic reticulum. Plant Biotechnol J 12(1):81–92. https://doi.org/10.1111/pbi.12119 | pl_PL |
dc.references | Concha C, Cañas R, Macuer J, Torres M, Herrada A, Jamett F, Ibáñez C (2017) Disease prevention: an opportunity to expand edible plant-based vaccines? Vaccines 5(2):14 | pl_PL |
dc.references | Criscuolo E, Caputo V, Diotti RA, Sautto GA, Kirchenbaum GA, Clementi N (2019) Alternative methods of vaccine delivery: an overview of edible and intradermal vaccines. J Immunol Res, 2019. | pl_PL |
dc.references | Drider D, Bendali F, Naghmouchi K, Chikindas ML (2016) Bacteriocins: not only antibacterial agents. Probiotics Antimicrob Proteins 8(4):177–182. https://doi.org/10.1007/s12602-016-9223-0 | pl_PL |
dc.references | Dyballa N, Metzger S (2009) Fast and sensitive colloidal coomassie G-250 staining for proteins in polyacrylamide gels. J Vis Exp 30:e1431 | pl_PL |
dc.references | El Ghachi M, Bouhss A, Barreteau H, Touzé T, Auger G, Blanot D, Mengin-Lecreulx D (2006) Colicin M exerts its bacteriolytic effect via enzymatic degradation of undecaprenyl phosphate-linked peptidoglycan precursors. J Biol Chem 281(32):22761–22772. https://doi.org/10.1074/jbc.M602834200 | pl_PL |
dc.references | Ellstrand NC (2003) Going to “great lengths” to prevent the escape of genes that produce specialty chemicals. Plant Physiol 132(August):1770–1774. https://doi.org/10.1104/Pp.103.025908 | pl_PL |
dc.references | Fowler T, Walker D, Davies SC (2014) The risk/benefit of predicting a post-antibiotic era: Is the alarm working? Ann N Y Acad Sci 1323(1):1–10. https://doi.org/10.1111/nyas.12399 | pl_PL |
dc.references | Fox JL (2013) Antimicrobial peptides stage a comeback. Nature Biotechnol 31(5):379–382. https://doi.org/10.1038/nbt.2572 | pl_PL |
dc.references | Ghequire MGK, De Mot R (2017) Turning over a new leaf: bacteriocins going green. Trends Microbiol xx:1–2. doi: 10.1016/j.tim.2017.11.001 | pl_PL |
dc.references | Hahn-Löbmann S, Stephan A, Schulz S, Schneider T, Shaverskyi A, Tusé D, Gleba Y (2019) Colicins and salmocins–new classes of plant-made non-antibiotic food antibacterials. Front plant sci 10:437 | pl_PL |
dc.references | Harkness RE, Braun V (1989) Colicin M inhibits peptidoglycan biosynthesis by interfering with lipid carrier recycling. J Biol Chem 264(11):6177–6182 | pl_PL |
dc.references | Hehle VK, Paul MJ, Roberts VA, van Dolleweerd CJ, Ma JKC (2015) Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants. The FASEB J 30(4):1590–1598. https://doi.org/10.1096/fj.15-283226 | pl_PL |
dc.references | Isaacson T, Damasceno CMB, Saravanan RS, He Y, Catalá C, Saladié M, Rose JKC (2006) Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1(2):769–774. https://doi.org/10.1038/nprot.2006.102 | pl_PL |
dc.references | Jones CA, Davis JS, Looke DFM (2017) Death from an untreatable infection may signal the start of the post-antibiotic era. Med J Aust 206(7):292–293. https://doi.org/10.5694/mja17.00077 | pl_PL |
dc.references | Jyothishwaran G, Kotresha D, Selvaraj T, Srideshikan SM, Rajvanshi PK, Jayabaskaran C (2007) A modified freeze-thaw method for efficient transformation of Agrobacterium tumefaciens. Curr Sci 93(6):770–772. https://doi.org/10.2307/24099118 | pl_PL |
dc.references | Kåhrström CT (2013) Entering a post-antibiotic era? Nat Rev Microbiol 11(3):146–146. https://doi.org/10.1038/nrmicro2983 | pl_PL |
dc.references | Kamenšek S, Žgur-Bertok D (2013) Global transcriptional responses to the bacteriocin colicin M in Escherichia coli. BMC microbiol 13(1):42 | pl_PL |
dc.references | Kock J, Olschlager T, Kamp RM, Braun V (1987) Primary structure of colicin M, an inhibitor of murein biosynthesis. J Bacteriol 169(7):3358–3361 | pl_PL |
dc.references | Lee IH, Jung YJ, Cho YG, Nou IS, Huq MA, Nogoy FM, Kang KK (2017) SP-LL-37, human antimicrobial peptide, enhances disease resistance in transgenic rice. PLoS One 12(3). doi: 10.1371/journal.pone.0172936 | pl_PL |
dc.references | Li JZ, Zhou LY, Peng YL, Fan J (2019) Pseudomonas bacteriocin syringacin M released upon desiccation suppresses the growth of sensitive bacteria in plant necrotic lesions. Microb biotechnol. | pl_PL |
dc.references | Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J et al (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16(2):161–168. https://doi.org/10.1016/S1473-3099(15)00424-7 | pl_PL |
dc.references | Łojewska E, Kowalczyk T, Olejniczak S, Sakowicz T (2016) Extraction and purification methods in downstream processing of plant-based recombinant proteins. Protein Expr Purif 120:110–117. https://doi.org/10.1016/j.pep.2015.12.018 | pl_PL |
dc.references | Mitra A, Zhang Z (1994) Expression of a human lactoferrin cDNA in tobacco cells produces antibacterial protein(s). Plant Physiol 106(3):977–981. https://doi.org/10.1104/pp.106.3.977 | pl_PL |
dc.references | Molton JS, Tambyah PA, Ang BSP, Ling ML, Fisher DA (2013) The global spread of healthcare-associated multidrug-resistant bacteria: A perspective from Asia. Clin Infect Dis 56(9):1310–1318. https://doi.org/10.1093/cid/cit020 | pl_PL |
dc.references | Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with to- bacco tissue cultures. Physiol Plant 15:473–497 | pl_PL |
dc.references | Nordmann P, Naas T, Poirel L (2011) Global spread of carbapenemase producing Enterobacteriaceae. Emerg Infect Dis 17(10):1791–1798. https://doi.org/10.3201/eid1710.110655 | pl_PL |
dc.references | Olishevska S, Nickzad A, Déziel E (2019) Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Appl microbiol biotechnol 103(3):1189–1215 | pl_PL |
dc.references | Paškevičius Š, Starkevič U, Misiūnas A, Vitkauskienė A, Gleba Y, Ražanskienė A (2017) Plant-expressed pyocins for control of Pseudomonas aeruginosa. PLoS One 12(10). doi: 10.1371/journal.pone.0185782 | pl_PL |
dc.references | Paveenkittiporn W, Kerdsin A, Chokngam S, Bunthi C, Sangkitporn S, Gregory CJ (2017) Emergence of plasmid-mediated colistin resistance and New Delhi metallo-β-lactamase genes in extensively drug-resistant Escherichia coli isolated from a patient in Thailand. Diagn Microbiol Infect Dis 87(2):157–159. https://doi.org/10.1016/j.diagmicrobio.2016.11.005 | pl_PL |
dc.references | Petruccelli S, Otegui MS, Lareu F, Tran Dinh O, Fitchette AC, Circosta A et al (2006) A KDEL-tagged monoclonal antibody is efficiently retained in the endoplasmic reticulum in leaves, but is both partially secreted and sorted to protein storage vacuoles in seeds. Plant Biotechnol J 4(5):511–527. https://doi.org/10.1111/j.1467-7652.2006.00200.x | pl_PL |
dc.references | Pressler U, Braun V, Wittman-Liebold B, Benz R (1986) Structural and functional properties of colicin B. J Biol Chem 261(6):2654–2659 | pl_PL |
dc.references | Pugh DM (2002) The EU precautionary bans of animal feed additive antibiotics. Toxicol Lett 128(1–3):35–44. https://doi.org/10.1016/S0378-4274(01)00531-8 | pl_PL |
dc.references | Ridenhour BJ, Metzger GA, France M, Gliniewicz K, Millstein J, Forney LJ, Top EM (2017) Persistence of antibiotic resistance plasmids in bacterial biofilms. Evol Appl 10(6):640–647. https://doi.org/10.1111/eva.12480 | pl_PL |
dc.references | Rubino S, Cappuccinelli P, Kelvin DJ (2011) Escherichia coli (STEC) serotype O104 outbreak causing haemolytic syndrome (HUS) in Germany and France. J Infect Dev Ctries 5(6):437–440. https://doi.org/10.3855/jidc.2172 | pl_PL |
dc.references | Sabalza M, Christou P, Capell T (2014) Recombinant plant-derived pharmaceutical proteins: current technical and economic bottlenecks. Biotechnol Lett 36(12):2367–2379. https://doi.org/10.1007/s10529-014-1621-3 | pl_PL |
dc.references | Sack M, Hofbauer A, Fischer R, Stoger E (2015) The increasing value of plant-made proteins. Curr Opin Biotechnol 32:163–170. https://doi.org/10.1016/j.copbio.2014.12.008 | pl_PL |
dc.references | Sartaj Sohrab S, Suhail MA, Kamal M, Husen AI, Azhar E (2017) Recent development and future prospects of plant-based vaccines. Curr drug metab 18(9):831–841 | pl_PL |
dc.references | Schaller HC, Bodenmüller H (1981) Isolation and amino acid sequence of a morphogenetic peptide from hydra. Proc Natl Acad Sci USA 78(11):7000–7004. https://doi.org/10.1073/pnas.78.11.7000 | pl_PL |
dc.references | Schmidt GW, Delaney SK (2010) Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genomics 283(3):233–241. https://doi.org/10.1007/s00438-010-0511-1 | pl_PL |
dc.references | Schneider T, Hahn-Löbmann S, Stephan A, Schulz S, Giritch A, Naumann M, Gleba Y (2018) Plant-made salmonella bacteriocins salmocins for control of salmonella pathovars. Sci Rep 8(1):4078 | pl_PL |
dc.references | Schulz S, Stephan A, Hahn S, Bortesi L, Jarczowski F, Bettmann U et al (2015) Broad and efficient control of major foodborne pathogenic strains of Escherichia coli by mixtures of plant-produced colicins. Proc Natl Acad Sci USA 112(40):E5454–E5460. https://doi.org/10.1073/pnas.1513311112 | pl_PL |
dc.references | Sharp PM, Li WH (1987) The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15(3):1281–1295. https://doi.org/10.1093/nar/15.3.1281 | pl_PL |
dc.references | Stephan A, Hahn-Löbmann S, Rosche F, Buchholz M, Giritch A, Gleba Y (2017) Simple purification of Nicotiana benthamiana-produced recombinant colicins: high-yield recovery of purified proteins with minimum alkaloid content supports the suitability of the host for manufacturing food additives. Int J Mol Sci 19(1):95. https://doi.org/10.3390/ijms19010095 | pl_PL |
dc.references | Tamari F, Hinkley CS, Ramprashad N (2013) A comparison of DNA extraction methods using petunia hybrida tissues. J Biomol Tech 24(3):113. https://doi.org/10.7171/jbt.13-2403-001 | pl_PL |
dc.references | Touzé T, Barreteau H, El Ghachi M, Bouhss A, Barnéoud-Arnoulet A, Patin D et al (2012) Colicin M, a peptidoglycan lipid-II-degrading enzyme: potential use for antibacterial means? Biochem Soc Trans 40(6):1522–1527. https://doi.org/10.1042/BST20120189 | pl_PL |
dc.references | Woolhouse M, Ward M, van Bunnik B, Farrar J (2015) Antimicrobial resistance in humans, livestock and the wider environment. Philos Trans R Soc Lond B Biol Sci 370(1670):20140083–20140083. https://doi.org/10.1098/rstb.2014.0083 | pl_PL |
dc.references | World Health Organization 2014 Antimicrobial resistance: global report on surveillance 2014 WHO 1–257 9789241564748 | pl_PL |
dc.references | Zeth K, Römer C, Patzer SI, Braun V (2008) Crystal structure of colicin M, a novel phosphatase specifically imported by Escherichia coli. J Biol Chem 283(37):25324–25331. https://doi.org/10.1074/jbc.M802591200 | pl_PL |
dc.references | Zhu H, Reynolds LB, Menassa R (2017) A hyper-thermostable α-amylase from Pyrococcus furiosus accumulates in Nicotiana tabacum as functional aggregates. BMC Biotechnol 17(1):53. https://doi.org/10.1186/s12896-017-0372-3 | pl_PL |
dc.identifier.doi | 10.1007/s11816-019-00571-y | |
dc.relation.volume | 1 | pl_PL |
dc.discipline | nauki biologiczne | pl_PL |