Pokaż uproszczony rekord

dc.contributor.authorIdczak, Dariusz
dc.contributor.authorWalczak, Stanislaw
dc.date.accessioned2021-10-07T09:27:58Z
dc.date.available2021-10-07T09:27:58Z
dc.date.issued2020
dc.identifier.citationIdczak, D.; Walczak, S. An Extremum Principle for Smooth Problems. Games 2020, 11, 56. https://doi.org/10.3390/g11040056pl_PL
dc.identifier.issn2073-4336
dc.identifier.urihttp://hdl.handle.net/11089/39350
dc.description.abstractWe derive an extremum principle. It can be treated as an intermediate result between the celebrated smooth-convex extremum principle due to Ioffe and Tikhomirov and the Dubovitskii–Milyutin theorem. The proof of this principle is based on a simple generalization of the Fermat’s theorem, the smooth-convex extremum principle and the local implicit function theorem. An integro-differential example illustrating the new principle is presented.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.relation.ispartofseriesGames;11(4)
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectextremum principlepl_PL
dc.subjectFermat’s theorempl_PL
dc.subjectlocal implicit function theorempl_PL
dc.titleAn Extremum Principle for Smooth Problemspl_PL
dc.typeArticlepl_PL
dc.page.number6pl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, Polandpl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, Poland; Faculty of Mathematics and Computer Science, Stefan Batory State University, Batorego 64C, 96-100 Skierniewice, Polandpl_PL
dc.referencesIoffe, A.D.; Tikhomirov, V.M. Theory of Extremal Problems; Elsevier: Amsterdam, The Netherlands, 1979.pl_PL
dc.referencesDubovitskii, M.Y.; Milyutin, A.A. The extremum problem in the presence of constraints. Dokl. Acad. Nauk SSSR 1963, 149, 759–762.pl_PL
dc.referencesDubovitskii, M.Y.; Milyutin, A.A. Extremum problems in the presence of constraints. Zh. Vychisl. Mat. Mat. Fiz. 1965, 5, 395–453.pl_PL
dc.referencesGirsanov, I.W. Lectures on Mathematical Theory of Extremum Problems; Springer: New York, NY, USA, 1972.pl_PL
dc.referencesAvakov, E.R.; Magaril-Il’yaev, G.G.; Tikhomirov, V.M. Lagrange’s principle in extremum problems with constraints. Russ. Math. Surv. 2013, 68, 401–433.pl_PL
dc.referencesIdczak, D.; Walczak, S. Necessary optimality conditions for an integro-differential Bolza problem via Dubovitskii-Milyutin method. Discret. Contin. Dyn. Syst. B 2019, 24, 2281.pl_PL
dc.identifier.doihttps://doi.org/10.3390/g11040056
dc.relation.volume56pl_PL
dc.subject.msc90C48
dc.subject.msc49K27
dc.disciplinematematykapl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe