dc.contributor.author | Idczak, Dariusz | |
dc.contributor.author | Walczak, Stanislaw | |
dc.date.accessioned | 2021-10-07T09:27:58Z | |
dc.date.available | 2021-10-07T09:27:58Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Idczak, D.; Walczak, S. An Extremum Principle for Smooth Problems. Games 2020, 11, 56. https://doi.org/10.3390/g11040056 | pl_PL |
dc.identifier.issn | 2073-4336 | |
dc.identifier.uri | http://hdl.handle.net/11089/39350 | |
dc.description.abstract | We derive an extremum principle. It can be treated as an intermediate result between
the celebrated smooth-convex extremum principle due to Ioffe and Tikhomirov and the
Dubovitskii–Milyutin theorem. The proof of this principle is based on a simple generalization of the
Fermat’s theorem, the smooth-convex extremum principle and the local implicit function theorem.
An integro-differential example illustrating the new principle is presented. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | MDPI | pl_PL |
dc.relation.ispartofseries | Games;11(4) | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | extremum principle | pl_PL |
dc.subject | Fermat’s theorem | pl_PL |
dc.subject | local implicit function theorem | pl_PL |
dc.title | An Extremum Principle for Smooth Problems | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 6 | pl_PL |
dc.contributor.authorAffiliation | Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, Poland; Faculty of Mathematics and Computer Science, Stefan Batory State University, Batorego 64C, 96-100 Skierniewice, Poland | pl_PL |
dc.references | Ioffe, A.D.; Tikhomirov, V.M. Theory of Extremal Problems; Elsevier: Amsterdam, The Netherlands, 1979. | pl_PL |
dc.references | Dubovitskii, M.Y.; Milyutin, A.A. The extremum problem in the presence of constraints. Dokl. Acad. Nauk SSSR 1963, 149, 759–762. | pl_PL |
dc.references | Dubovitskii, M.Y.; Milyutin, A.A. Extremum problems in the presence of constraints. Zh. Vychisl. Mat. Mat. Fiz. 1965, 5, 395–453. | pl_PL |
dc.references | Girsanov, I.W. Lectures on Mathematical Theory of Extremum Problems; Springer: New York, NY, USA, 1972. | pl_PL |
dc.references | Avakov, E.R.; Magaril-Il’yaev, G.G.; Tikhomirov, V.M. Lagrange’s principle in extremum problems with constraints. Russ. Math. Surv. 2013, 68, 401–433. | pl_PL |
dc.references | Idczak, D.; Walczak, S. Necessary optimality conditions for an integro-differential Bolza problem via Dubovitskii-Milyutin method. Discret. Contin. Dyn. Syst. B 2019, 24, 2281. | pl_PL |
dc.identifier.doi | https://doi.org/10.3390/g11040056 | |
dc.relation.volume | 56 | pl_PL |
dc.subject.msc | 90C48 | |
dc.subject.msc | 49K27 | |
dc.discipline | matematyka | pl_PL |