dc.contributor.author | Soszyński, Mirosław | |
dc.contributor.author | Naparło, Katarzyna | |
dc.contributor.author | Bartosz, Grzegorz | |
dc.contributor.author | Sadowska-Bartosz, Izabela | |
dc.date.accessioned | 2021-10-04T14:43:05Z | |
dc.date.available | 2021-10-04T14:43:05Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | http://hdl.handle.net/11089/39320 | |
dc.description.abstract | The inhibitory effects a range of synthetic and natural antioxidants on lipid peroxidation of egg yolk and erythrocyte membranes induced by a free radical generator 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) was compared, with significant differences being found between both systems. When the protection by selected antioxidants against the effects of AAPH on erythrocytes (hemolysis, oxidation of hemoglobin and glutathione (GSH) and generation of reactive oxygen species (ROS)) was studied, most antioxidants were protective, but in some tests (oxidation of hemoglobin and GSH) some acted as prooxidants, inducing oxidation in the absence of AAPH and enhancing the AAPH-induced oxidation. These results demonstrate a diversified action of antioxidants in different systems and point to a need for careful extrapolation of any conclusions drawn from one parameter or experimental system to another. | pl_PL |
dc.description.sponsorship | This study was performed within the project of the Minister of Science and Higher Education “Regional Initiative of Excellence”, Project No. 026/RID/2018/19. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | MDPI | pl_PL |
dc.relation.ispartofseries | Molecules;25(14) | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | antioxidant | pl_PL |
dc.subject | lipid peroxidation | pl_PL |
dc.subject | AAPH | pl_PL |
dc.subject | hemolysis | pl_PL |
dc.subject | glutathione | pl_PL |
dc.subject | reactive oxygen species | pl_PL |
dc.subject | hemoglobin | pl_PL |
dc.title | Comparison of Antioxidants: The Limited Correlation between Various Assays of Antioxidant Activity | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 14 | pl_PL |
dc.contributor.authorAffiliation | Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 35-601 Rzeszow, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 35-601 Rzeszow, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 35-601 Rzeszow, Poland | pl_PL |
dc.identifier.eissn | 1420-3049 | |
dc.references | Kampa, R.P.; Kicinska, A.; Jarmuszkiewicz, W.; Pasikowska-Piwko, M.; Dolegowska, B.; Debowska, R.; Szewczyk, A.; Bednarczyk, P. Naringenin as an opener of mitochondrial potassium channels in dermal fibroblasts. Exp. Dermatol. 2019, 28, 543–550. | pl_PL |
dc.references | Lanigan, R.S.; Yamarik, T.A. Final report on the safety assessment of BHT (1). Int. J. Toxicol. 2002, 21 (Suppl. S2), 19–94. | pl_PL |
dc.references | Ito, N.; Fukushima, S.; Tsuda, H. Carcinogenicity and modification of the carcinogenic response by BHA, BHT, and other antioxidants. Crit. Rev. Toxicol. 1985, 15, 109–150. | pl_PL |
dc.references | Poulsen, E. Safety evaluation of substances consumed as technical ingredients (food additives). Food Addit. Contam. 1991, 8, 125–133. | pl_PL |
dc.references | Carocho, M.; Ferreira, I.C. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 2013, 51, 15–25. | pl_PL |
dc.references | Gilgun-Sherki, Y.; Melamed, E.; Offen, D. Oxidative stress induced neurodegenerative diseases: The need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 2001, 40, 959–975. | pl_PL |
dc.references | Cui, L.; Decker, E.A. Phospholipids in foods: Prooxidants or antioxidants? J. Sci. Food Agric. 2016, 96, 18–31. | pl_PL |
dc.references | Villanueva, C.; Kross, R.D. Antioxidant-induced stress. Int. J. Mol. Sci. 2012, 13, 2091–2109. | pl_PL |
dc.references | Grzesik, M.; Bartosz, G.; Stefaniuk, I.; Pichla, M.; Namieśnik, J.; Sadowska-Bartosz, I. Dietary antioxidants as a source of hydrogen peroxide. Food Chem. 2019, 278, 692–699. | pl_PL |
dc.references | Niki, E. Free radical initiators as source of water- or lipid-soluble peroxyl radicals. Methods Enzymol. 1990, 186, 100–108. | pl_PL |
dc.references | Zou, C.G.; Agar, N.S.; Jones, G.L. Oxidative insult to human red blood cells induced by free radical initiator AAPH and its inhibition by a commercial antioxidant mixture. Life Sci. 2001, 69, 75–86. | pl_PL |
dc.references | Ji, J.A.; Zhang, B.; Cheng, W.; Wang, Y.J. Methionine, tryptophan, and histidine oxidation in a model protein, PTH: Mechanisms and stabilization. J. Pharm. Sci. 2009, 98, 4485–4500. | pl_PL |
dc.references | Wu, W.; Zhang, C.; Kong, X.; Hua, Y. Oxidative modification of soy protein by peroxyl radicals. Food Chem. 2009, 116, 295–301. | pl_PL |
dc.references | Drummen, G.P.; van Liebergen, L.C.; Op den Kamp, J.A.; Post, J.A. C11-BODIPY(581/591), an oxidation-sensitive fluorescent lipid peroxidation probe: (Micro)Spectroscopic characterization and validation of methodology. Free Radic. Biol. Med. 2002, 33, 473–490. | pl_PL |
dc.references | Carlsen, C.U.; Kurtmann, L.; Brüggemann, D.A.; Hoff, S.; Risbo, J.; Skibsted, L.H. Investigation of oxidation in freeze-dried membranes using the fluorescent probe C11-BODIPY(581/591). Cryobiology 2009, 58, 262–267. | pl_PL |
dc.references | Zhu, M.; Qin, Z.J.; Hu, D.; Munishkina, L.A.; Fink, A.L. Alpha-synuclein can function as an antioxidant preventing oxidation of unsaturated lipid in vesicles. Biochemistry 2006, 45, 8135–8142. | pl_PL |
dc.references | Dodge, J.T.; Mitchell, C.; Hanahan, D.J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch. Biochem. Biophys. 1963, 100, 119–130. | pl_PL |
dc.references | Sugino, H.; Nitoda, T.; Junoja, L.R. General chemical composition of hen eggs. In Hen Eggs, Their Basic and Applied Science; Yamamoto, T., Juneja, L.R., Hatta, H., Kim, M., Eds.; CRC Press: Boca Raton, FL, USA, 1997. | pl_PL |
dc.references | Ximenes, V.F.; Lopes, M.G.; Petrônio, M.S.; Regasini, L.O.; Silva, D.H.; da Fonseca, L.M. Inhibitory effect of gallic acid and its esters on 2,2′-azobis(2-amidinopropane)hydrochloride (AAPH)-induced hemolysis and depletion of intracellular glutathione in erythrocytes. J. Agric. Food Chem. 2010, 58, 5355–5362. | pl_PL |
dc.references | Sato, Y.; Kamo, S.; Takahashi, T.; Suzuki, Y. Mechanism of free radical-induced hemolysis of human erythrocytes: Hemolysis by water-soluble radical initiator. Biochemistry 1995, 34, 8940–8949. | pl_PL |
dc.references | Kalender, Y.; Kaya, S.; Durak, D.; Uzun, F.G.; Demir, F. Protective effects of catechin and quercetin on antioxidant status, lipid peroxidation and testis-histoarchitecture induced by chlorpyrifos in male rats. Environ. Toxicol. Pharmacol. 2012, 33, 141–148. | pl_PL |
dc.references | Lima, G.P.P.; Vianello, F.; Corrêa, C.R.; da Silva Campos, R.A.; Borguini, M.G. Polyphenols in fruits and vegetables and its effect on human health. Food Nutr. Sci. 2014, 5, 1065–1082. | pl_PL |
dc.references | Milella, L.; Caruso, M.; Galgano, F.; Favati, F.; Padula, M.C.; Martelli, G. Role of the cultivar in choosing Clementine fruits with a high level of health-promoting compounds. J. Agric. Food Chem. 2011, 59, 5293–5298. | pl_PL |
dc.references | Fujiki, H. Green tea: Health benefits as cancer preventive for humans. Chem. Rec. 2005, 5, 119–132. | pl_PL |
dc.references | Gadkari, P.V.; Balaraman, M. Catechins: Sources, extraction and encapsulation: A review. Food Bioprod. Proc. 2015, 93, 122–138. | pl_PL |
dc.references | Reckziegel, P.; Dias, V.T.; Benvegnú, D.M.; Boufleur, N.; Barcelos, R.C.S.; Segat, H.J.; Pase, C.S.; Dos Santos, C.M.M.; Flores, É.M.M.; Bürger, M.E. Antioxidant protection of gallic acid against toxicity induced by Pb in blood, liver and kidney of rats. Toxicol. Rep. 2016, 3, 351–356. | pl_PL |
dc.references | Choubey, S.; Goyal, S.; Varughese, L.R.; Kumar, V.; Sharma, A.K.; Beniwal, V. Probing Gallic Acid for Its Broad Spectrum Applications. Mini Rev. Med. Chem. 2018, 18, 1283–1293. | pl_PL |
dc.references | Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran. J. Basic Med. Sci. 2019, 22, 225–237. | pl_PL |
dc.references | Ashidate, K.; Kawamura, M.; Mimura, D.; Tohda, H.; Miyazaki, S.; Teramoto, T.; Yamamoto, Y.; Hirata, Y. Gentisic acid, an aspirin metabolite, inhibits oxidation of low-density lipoprotein and the formation of cholesterol ester hydroperoxides in human plasma. Eur. J. Pharmacol. 2005, 513, 173–179. | pl_PL |
dc.references | Joshi, R.; Gangabhagirathi, R.; Venu, S.; Adhikari, S.; Mukherjee, T. Antioxidant activity and free radical scavenging reactions of gentisic acid: In-vitro and pulse radiolysis studies. Free Radic. Res. 2012, 46, 11–20. | pl_PL |
dc.references | Nakayama, T.; Hashimoto, T.; Kajiya, K.; Kumazawa, S. Affinity of polyphenols for lipid bilayers. Biofactors 2000, 13, 147–151. | pl_PL |
dc.references | Minnelli, C.; Galeazzi, R.; Laudadio, E.; Amici, A.; Rusciano, D.; Armeni, T.; Cantarini, M.; Stipa, P.; Mobbili, G. Monoalkylated Epigallocatechin-3-gallate (C18-EGCG) as Novel Lipophilic EGCG Derivative: Characterization and Antioxidant Evaluation. Antioxidants 2020, 9, 208. | pl_PL |
dc.references | Abramovic, H.; Grobin, B.; Poklar Ulrih, N.; Blaˇz Cigi, B. Relevance and Standardization of In Vitro Antioxidant Assays: ABTS, DPPH, and Folin–Ciocalteu. J. Chem. 2018, 2018, 4608405. | pl_PL |
dc.references | McCay, P.B. Vitamin E: Interactions with free radicals and ascorbate. Annu. Rev. Nutr. 1985, 5, 323–340 | pl_PL |
dc.references | Ko, C.H.; Li, K.; Ng, P.C.; Fung, K.P.; Li, C.L.; Wong, R.P.-O.; Chui, K.M.; Gu, G.J.-S.; Yung, E.; Wang, C.C.; et al. Pro-oxidative effects of tea and polyphenols, epigallocatechin-3-gallate and epigallocatechin, on G6PD-deficient erythrocytes in vitro. Int. J. Mol. Med. 2006, 18, 987–994. | pl_PL |
dc.references | Rodacka, A.; Strumillo, J.; Serafin, E.; Puchala, M. Effect of Resveratrol and Tiron on the Inactivation of Glyceraldehyde-3-phosphate Dehydrogenase Induced by Superoxide Anion Radical. Curr. Med. Chem. 2014, 21, 1061–1069. | pl_PL |
dc.references | Strumillo, J.; Nowak, K.E.; Krokosz, A.; Rodacka, A.; Puchala, M.; Bartosz, G. The role of resveratrol and melatonin in the nitric oxide and its oxidation products mediated functional and structural modifications of two glycolytic enzymes: GAPDH and LDH. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 877–885. | pl_PL |
dc.references | Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. | pl_PL |
dc.references | Wang, J.; Sun, B.; Cao, Y.; Tian, Y. Protection of wheat bran feruloyl oligosaccharides against free radical-induced oxidative damage in normal human erythrocytes. Food Chem. Toxicol. 2009, 47, 1591–1599. | pl_PL |
dc.references | Wang, G.; Lei, Z.; Zhong, Q.; Wu, W.; Zhang, H.; Min, T.; Wu, H.; Lai, F. Enrichment of caffeic acid in peanut sprouts and evaluation of its in vitro effectiveness against oxidative stress-induced erythrocyte hemolysis. Food Chem. 2017, 217, 332–341. | pl_PL |
dc.references | Senft, A.; Dalton, T.; Shertzer, H. Determining glutathione and glutathione disulfide using the fluorescence probe o-phthalaldehyde. Anal. Biochem. 2000, 280, 80–86. | pl_PL |
dc.contributor.authorEmail | miroslaw.soszynski@biol.uni.lodz.pl | pl_PL |
dc.contributor.authorEmail | katarzyna.naparlo@gmail.com | pl_PL |
dc.contributor.authorEmail | gbartosz@ur.edu.pl | pl_PL |
dc.contributor.authorEmail | sadowska@ur.edu.pl | pl_PL |
dc.identifier.doi | 10.3390/molecules25143244 | |
dc.relation.volume | 3244 | pl_PL |
dc.discipline | nauki biologiczne | pl_PL |