dc.contributor.author | Kędzierska, Marta | |
dc.contributor.author | Miłowska, Katarzyna | |
dc.date.accessioned | 2021-09-30T17:13:07Z | |
dc.date.available | 2021-09-30T17:13:07Z | |
dc.date.issued | 2021-09-29 | |
dc.identifier.issn | 1730-2366 | |
dc.identifier.uri | http://hdl.handle.net/11089/39288 | |
dc.description.abstract | Silver is known for its biocidal properties. This metal has been used for decorations and food preservation since ancient times and has also been used in medicine. Silver foil has been used to cover wounds and burns. In addition, silver solutions were created to help fight the microorganisms responsible for causing infections, which helped the wound healing process. Currently, to increase and optimize the properties of silver, it is used on a nanometric scale. Nanosilver, due to its expanded spectrum of properties, is used in many economic sectors, including in the production of disinfectants and food films, as well as in animal farms. Nanoparticles are also the basis of nanomedicine action. Creating new drug complexes with nanosilver and modifying the medical materials used in implantology or dentistry allow the lives of many people to be saved every day. In addition, nanosilver particles are commonly used as a specific disinfectant in the production of hospital materials: dressings, bandages, surgical masks, hospital clothing and shoes, and equipment. With the growing use of nanosilver, there are concerns about its harmful effects on living organisms, because not all its mechanisms of action are known. As is well known, the dose determines the toxicity of a given substance; the case is similar for nanosilver. However, is the dose providing antibacterial and antifungal properties non-toxic to animals and humans? This review presents a summary of the scientific research showing the scope of nanosilver activity and the resulting threats. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Acta Universitatis Lodziensis. Folia Biologica et Oecologica | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | nanoparticles | en |
dc.subject | nanosilver | en |
dc.subject | colloidal silver | en |
dc.subject | nanomedicine | en |
dc.subject | nanomaterials | en |
dc.title | Silver nanoparticles – possible applications and threats | en |
dc.type | Article | |
dc.page.number | 14-31 | |
dc.contributor.authorAffiliation | Kędzierska, Marta - University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Poland | en |
dc.contributor.authorAffiliation | Miłowska, Katarzyna - University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Poland | en |
dc.identifier.eissn | 2083-8484 | |
dc.references | Abad-Álvaro, I., Trujillo, C., Bolea, E., Laborda, F., Fondevila, M., Latorre, M.A., Castillo J.R. 2019. Silver nanoparticles-clays nanocomposites as feed additives: Characterization of silver species released during in vitro digestions. Effects on silver retention in pigs. Microchemical Journal, 149: 57–68. | en |
dc.references | Ahmad, S., Subhani, K., Rasheed, A., Ashraf, M., Afzal, A., Ramzan, K., Sarwar, Z. 2020. Development of conductive fabrics by using silver nanoparticles for electronic applications. Journal of Electronic Materials, 49: 1330–1337. | en |
dc.references | Ahn, S.J., Lee, S.J., Kook, J.K., Lim, B.S. 2009. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dental Materials, 25(2): 206–213. | en |
dc.references | Al-Bishri, W.M. 2018. Toxicity study of gold and silver nanoparticles on experimental animals. Pharmacophore, 1: 48–55. | en |
dc.references | Alonso, A., Muñoz-Berbel, X., Vigués, N., Rodríguez-Rodríguez, R., Macanás, J., Muñoz, M., Mas, J., Muraviev, D.N. 2013. Superparamagnetic Ag-co-nanocomposites on granulated cation exchange polymeric matrices with enhanced antibacterial activity for the environmentally safe purification of water. Advanced Functional Materials, 23(19): 2450–2458. | en |
dc.references | Alt, V., Bechert, T., Steinrücke, P. 2004. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 25(18): 4383–4391. | en |
dc.references | Andara, M., Agarwal, A., Scholvin, D. 2006. Hemocompatibility of diamondlike carbon-metal composite thin films. Diamond and Related Materials, 15(11–12): 1941–1948. | en |
dc.references | Anjali, C.G., Kumar, V.G., Stalin, D.T., Vkarthic, V., Govindaraju, K., Joselin, J.M., Baalamurugan, J. 2020. Antibacterial activity of silver nanoparticles (biosynthesis): A short review on recent advances. Biocatalysis and Agricultural Biotechnology, 1: 20–25. | en |
dc.references | Arfat, Y.A., Ejaz, M., Jacob, H., Ahmed, J. 2017. Deciphering the potential of guar gum/Ag-Cu nanocomposite films as an active food packaging material. Carbohydrate Polymers, 157: 65–71. | en |
dc.references | Arora, S., Jain, J., Rajwade, J.M. 2009. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicology and Applied Pharmacology, 236: 310–318. | en |
dc.references | Asharani, P.V., Hande, M.P., Valiyaveettil, S. 2009. Anti-proliferative activity of silver nanoparticles. BMC Molecular and Cell Biology, 10: 65. | en |
dc.references | Banach, M., Tymczyna, L., Chmielowiec-Korzeniowska, A., Pulit-Prociak, J. 2016. Nanosilver biocidal properties and their application in disinfection of hatchers in poultry processing plants. Bioinorganic Chemistry and Applications, 2016: 5214783. | en |
dc.references | Bhol, K.C., Alroy, J., Schechter, P.J. 2004. Anti-inflammatory effect of topical nanocrystalline silver cream on allergic contact dermatitis in a guinea pig model. Clinical and Experimental Dermatology, 29(3): 282–287. | en |
dc.references | Braydich-Stolle, L., Lucas, B., Schrand, A.M. 2010. Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicological Sciences, 116: 577–589. | en |
dc.references | Bumbudsanpharoke, N., Choi, J., Ko, S. 2015. Applications of nanomaterials in food packaging. Journal of Nanosciences and Nanotechnology, 15: 6357–6372. | en |
dc.references | Cavallin, M.D., Wilk, R., Oliveira, I.M., Cardoso, N.C.S., Khalil, N.M., Oliveira, C.A., Romano, M.A., Romano, R.M. 2018. The hypothalamic-pituitary-testicular axis and the testicular function are modulated after silver nanoparticle exposure. Toxicological Research, 7(1): 102–116. | en |
dc.references | Chaloupka, K., Malam, Y., Seifalian, A.M. 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology, 28(11): 580–588. | en |
dc.references | Chambers, J.L., Christoph, G.G., Kreiger, M. 2002. Silver ion inhibition of serine proteases: Crystallographic study of silver-trypsin. Biochemical and Biophysical Research Communications, 59: 70–74. | en |
dc.references | Chen, D., Qiao, X., Qiu, X., Chen, J. 2009. Synthesis and electrical properties of uniform silver nanoparticles for electronic applications. Journal of Material Science, 44: 1076–1081. | en |
dc.references | Chen, J., Guo, Z., Wang, H.B., Gong, M., Kong, X.K., Xia, P., Chen, Q.W. 2013. Multifunctional Fe3O4-C-Ag hybrid nanoparticles as dual modal imaging probes and near-infrared light-responsive drug delivery platform. Biomaterials, 34(2): 571–581. | en |
dc.references | Chirra, H.D., Biswal, D., Hilt, Z. 2016. Gold nanoparticles and surfaces: Nanodevices for diagnostics and therapeutics. Drug Delivery Nanoparticles Formulation and Characterization, 191: 92. | en |
dc.references | Chmielowiec-Korzeniowska, A., Tymczyna, L., Drabik, A. 2007. Use of organic and mineral materials for biofiltration of air in hatcheries. Annals of Animal Science, 7(1): 153–162. | en |
dc.references | Close, D., Liang, Z., Lu, H., Yang, J., Chen, R. 2016. Novel asymmetric wettable AgNPs/chitosan wound dressing: In vitro and in vivo evaluation. ACS Applied Materials and Interfaces, 8(6): 3958–3968. | en |
dc.references | Corrêa, J.M., Mori, M., Sanches, H.L., Dibo da Cruz, A., Poiate, E., Venturini, I.A., Poiate, P. 2005. Silver nanoparticles in dental biomaterials. International Journal of Biomaterials, 1: 1–9. | en |
dc.references | Cozmuta, M.A., Peter, A., Mihaly-Cozmuta, L., Nicula, C., Crisan, L., Baia, L., Turila, A. 2015. Active packaging system based on Ag/TiO2 nanocomposite used for extending the shelf life of bread. Chemical and microbiological investigations. Packaging Technology and Science, 28(4): 271–284. | en |
dc.references | Deshmukh, S.P., Mullani, S.B., Koli, V.B., Patil, S.M., Kasabe, P.J., Dandge, P.B., Pawar, S.A., Delekar, S.D. 2018. Ag nanoparticles connected to the surface of TiO2 electrostatically for antibacterial photoinactivation studies. Photochemistry and Photobiology, 94(6): 1249–1262. | en |
dc.references | Deshmukh, S.P., Patil, S.M., Mullani, S.B., Delekar, S.D. 2019. Silver nanoparticles as an effective disinfectant: A review. Materials Science and Engineering: C, 97: 954–965. | en |
dc.references | Duncan, T.V. 2011. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1): 1–24. | en |
dc.references | Eaton, M. 2007. Nanomedicine: Industry-wise research. Nature Materials, 6: 251–253. | en |
dc.references | Echegoyen, Y., Nerin, C. 2013. Nanoparticle release from nano-silver antimicrobial food containers. Journal of Food Technology and Food Chemistry, 62: 16–22. | en |
dc.references | Ema, M., Okuda, H., Gamo, M., Honda, K. 2017. A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reproductive Toxicology, 67: 149–164. | en |
dc.references | Espinoza, S.M., Patil, H.I., Martinez, S.M., Casañas, E., Pimentel, R., Ige, P.P. 2020. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer. International Journal of Polymeric Materials and Polymeric Biomaterials, 69: 85–126. | en |
dc.references | Faiyaz, A., Prashanth, S.T., Sindhu, K., Nayak, A., Chaturvedi, S. 2019. Antimicrobial efficacy of nanosilver and chitosan against Streptococcus mutans, as an ingredient of toothpaste formulation: An in vitro study. Journal of Indian Society of Pedodontics and Preventive Dentistry, 37(1): 46–54. | en |
dc.references | Fu, J., Ji, J., Fan, D., Shen, J. 2006. Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex. Journal of Biomedical Materials Research Part A, 79(3): 665–674. | en |
dc.references | Ghanbari, H., Viatge, H., Kidane, A.G., Burriesci, G., Tavakoli, M., Seifalian, A.M. 2009. Polymeric heart valves: New materials, emerging hopes. Trends in Biotechnology, 27(6): 359–367. | en |
dc.references | Ghosh, P., Han, G., De, M., Kim, C.K., Rotello, V.M. 2008. Gold nanoparticles in delivery applications. Advanced Drug and Delivery Reviews, 60(11): 1307–1315. | en |
dc.references | Gitipour, A., Al-Abed, S.R., Thiel, S.W., Scheckel, K.G., Tolaymat, T. 2017. Nanosilver as a disinfectant in dental unit waterlines: Assessment of the physicochemical transformations of the AgNPs. Chemosphere, 173: 245–252. | en |
dc.references | Gliga, A.R., Di Bucchianico, S., Lindvall, J., Fadeel, B., Karlsson, H.L. 2018. RNA sequencing reveals long-term effects of silver nanoparticles on human lung cells. Scientific Reports, 8: 14. | en |
dc.references | Gond, S.K., Mishra, A., Verma, S.K. 2019. Synthesis and characterization of antimicrobial silver nanoparticles by an endophytic fungus isolated from Nyctanthes arbor-tristis. Proceedings of the National Academy of Sciences, India Section B, 1: 15–23. | en |
dc.references | Grunkemeier, G.L., Jin, R.Y., Starr, A. 2006. Prosthetic heart valves: Objective performance criteria versus randomized clinical trial. The Annals of Thoracic Surgery, 82(3): 776–780. | en |
dc.references | Guo, Z., Zeng, G., Cui, K., Chen, A. 2019. Toxicity of environmental nanosilver: Mechanism and assessment. Environmental Chemistry Letters, 17: 319–333. | en |
dc.references | Han, J.W., Ruiz-Garcia, L., Qian, J.P., Yang, X.T. 2018. Food packaging: A comprehensive review and future trends. Comprehensive Reviews in Food Science and Food Safety, 17: 860–877. | en |
dc.references | Hassan, A.A., Hafsa, A.S.H., Elghandour, M.M.M.Y., Reddy, P.R.K., Monroy, J.C., Salem, A.Z.M. 2019. Dietary supplementation with sodium bentonite and coumarin alleviates the toxicity of aflatoxin B1 in rabbits. Toxicon, 171: 35–42. | en |
dc.references | Hegarty, R., Goopy, J., Herd, R., McCorkell, B. 2007. Cattle selected for lower residual feed intake have reduced daily methane production. Journal of Animal Science, 85(6): 1479–1486. | en |
dc.references | Hu, Q.L., Bai, X., Hu, G.Q., Zuo, Y.Y. 2017. Unveiling the molecular structure of pulmonary surfactant corona on nanoparticles. ACS Nano, 11(7): 6832–6842. | en |
dc.references | Huang, Y., Chen, S., Bing, X., Gao, C., Wang, T., Yuan, B. 2011. Nanosilver migrated into food-simulating solutions from commercially available food fresh containers. Packaging Technology and Science, 24: 291–297. | en |
dc.references | Huang, Y., Mei, L., Chen, X., Wang, Q. 2018. Recent developments in food packaging based on nanomaterials. Nanomaterials, 8: 830. | en |
dc.references | Hussain, S.M., Hess, K.L., Gearhart, J.M. 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology In Vitro, 19: 975–983. | en |
dc.references | Ilic, V., Šaponjić, Z., Vodnik, V., Lazović, S.A., Dimitrijevic, S., Jovancic, P., Nedeljkovic, J.M., Radetic, M. 2010. Bactericidal efficiency of silver nanoparticles deposited onto radio frequency plasma pretreated polyester fabrics. Industrial and Engineering Chemistry Research, 49(16): 7287–7293. | en |
dc.references | Ip, M., Lui, S.L., Poon, V.K.M. 2006. Antimicrobial activity of silver dressings: An in vivo comparison. Journal of Medical Microbiology, 55: 59–63. | en |
dc.references | Ivask, A., Voelcker, N.H., Seabrook, S.A., Hor, M., Kirby, J.K., Fenech, M., Davis, T.P., Ke, P.C. 2015. DNA melting and genotoxicity induced by silver nanoparticles and graphene. Chemical Research in Toxicology, 28(5): 1023–1035. | en |
dc.references | Jamieson, W.R., Fradet, G.J., Abel, J.G. 2009. Seven-year results with the St Jude Medical Silzone mechanical prosthesis. The Journal of Thoracic and Cardiovascular Surgery, 137(5): 1109–1115. | en |
dc.references | Jia, J., Li, F., Zhou, H., Bai, Y., Liu, S., Jiang, Y., Jiang, G., Yan, B. 2017. Oral exposure to silver nanoparticles or silver ions may aggravate fatty liver disease in overweight mice. Environmental Science and Technology, 51(16): 9334–9343. | en |
dc.references | Jiranek, W.A., Hanssen, A.D., Greenwald, A.S. 2006. Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement. Journal of Bone and Joint Surgery, 88(11): 2487–2500. | en |
dc.references | Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L., Daszak, P. 2008. Global trends in emerging infectious diseases. Nature, 451(7181): 990. | en |
dc.references | Juling, S., Bohmert, L., Lichtenstein, D., Oberemm, A., Creutzenberg, O., Thunemann, A.F., Braeuning, A., Lampen, A. 2018. Comparative proteomic analysis of hepatic effects induced by nanosilver, silver ions and nanoparticle coating in rats. Food and Chemical Toxicology, 113: 255–266. | en |
dc.references | Kang, J.S., Park, J.-W. 2018. Insight on cytotoxic effects of silver nanoparticles: Alternative androgenic transactivation by adsorption with DHT. Science of the Total Environment, 618: 712–717. | en |
dc.references | Kaur, A., Preet, S., Kumar, V., Kumar, R., Kumar, R. 2019. Synergetic effect of vancomycin loaded silver nanoparticles for enhanced antibacterial activity. Colloids and Surfaces B: Biointerfaces, 176: 62–69. | en |
dc.references | Khalid, A., Hamza, A., Fasih, A.A., Alisha, A.A., Jehangir, A., Junaid, R., Uroosa, T., Syed, H.A. 2020. Analysis of anti-microbial and antibiofilm activity of hand washes and sanitizers against S. aureus and P. aeruginosa. Journal of Pakistan Medical Association, 70(1): 100–104. | en |
dc.references | Kim, J.S., Kuk, E., Yu, K.N. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine, 3(1): 95–101. | en |
dc.references | Kim, Y.K. 2019. 8 – Nanotechnology-based advanced coatings and functional finishes for textiles. Smart Textile Coatings and Laminates, 2nd Edition: 189–203. | en |
dc.references | Ko, Y.S., Joe, Y.H., Seo, M., Lim, K., Hwang, J., Woo, K. 2014. Prompt and synergistic antibacterial activity of silver nanoparticle-decorated silica hybrid particles on air filtration. Journal of Materials Chemistry B, 2(39): 6714–6722. | en |
dc.references | Konopka, M., Kowalski, Z., Wzorek, Z. 2009. Disinfection of meat industry equipment and production rooms with the use of liquids containing silver nano-particles. Archives of Environmental Protection, 35(1): 107–115. | en |
dc.references | Kovalenko, A.M., Tkachev, A.V., Tkacheva, O.L., Gutyj, B.V., Prystupa, O.I., Kukhtyn, M.D., Dutka, V.R., Veres, Y.M., Dashkovskyy, O.O., Senechyn, V.V., Riy, M.B., Kotelevych, V.A. 2020. Analgesic effectiveness of new nanosilver drug. Ukrainian Journal of Ecology, 10(1): 300–306. | en |
dc.references | Lankveld, D.P., Oomen, A.G., Krystek, P., Neigh, A., Troost-de Jong, A., Noorlander, C., Van Eijkeren, J., Geertsma, R., De Jong, W. 2010. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials, 31(32): 8350–8361. | en |
dc.references | Leaper, D.J. 2006. Silver dressings: Their role in wound management. International Wound Journal, 3(4): 282–294. | en |
dc.references | Lebedová, J., Hedberg, Y.S., Odnevall-Wallinder, I., Karlsson, H.L. 2018. Size-dependent genotoxicity of silver, gold and platinum nanoparticles studied using the mini-gel comet assay and micronucleus scoring with flow cytometry. Mutagene, 33(1): 77–85. | en |
dc.references | Lee, J.S., Lytton-Jean, A.K., Hurst, S.J., Mirkin, C.A. 2007. Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Letters, 7(7): 2112–2115. | en |
dc.references | Levard, C., Hotze, E.M., Lowry, G.V., Brown, G.E. 2012. Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environmental Science and Technology, 46(13): 6900–6914. | en |
dc.references | Li, L.X.Y., Xu, Z.L., Wimmer, A., Tian, Q.H., Wang, X.P. 2017a. New insights into the stability of silver sulfide nanoparticles in surface water: Dissolution through hypochlorite oxidation. Environmental Science and Technology, 51(14): 7920–7927. | en |
dc.references | Li, Y., Qin, T., Ingle, T., Yan, J., He, W., Yin, J.-J., Chen, T. 2017b. Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Archives of Toxicology, 91(1): 509–519. | en |
dc.references | Liao, J., Anchun, M., Zhu, Z., Quan, Y. 2010. Antibacterial titanium plate deposited by silver nanoparticles exhibits cell compatibility. International Journal of Nanomedicine, 5: 337–342. | en |
dc.references | López I.J., Vilchis, N.A.R., Sánchez Mendieta, V., Avalos Borja, M. 2013. Production and characterization of silver nanoparticles supported on cotton fibers. Superficies y Vacío, 3(26): 73–78. | en |
dc.references | Lopez-Carballo, G., Higueras, L., Gavara, R., Hernandez-Muñoz, P. 2013. Silver ions release from antibacterial chitosan films containing in situ generated silver nanoparticles. Journal of Agricultural and Food Chemistry, 61: 260–267. | en |
dc.references | Magalhães, A.P.R., Santos, L.B., Lopes, L.G. 2012. Nanosilver application in dental cements. ISRN Nanotechnology, 2012: 1–6. | en |
dc.references | Mandal, A.K. 2017. Silver nanoparticles as drug delivery vehicle against Infections. Global Journal of Nanomedicine, 3(2): 1–4. | en |
dc.references | Martınez-Abad, A., Lagaron, J.M., Ocio, M.J. 2012. Development and characterization of silver-based antimicrobial ethylene-vinyl alcohol copolymer (EVOH) films for foodpackaging applications. Journal of Agricultural and Food Chemistry, 60: 5350–5359. | en |
dc.references | McCarlie, S., Boucher, C.E., Bragg, R.R. 2020. Molecular basis of bacterial disinfectant resistance. Drug Resistance Updates, 48: 1–4. | en |
dc.references | Metak, A., Ajaal, T. 2013. Investigation on polymer based nano-silver as food packaging materials. International Journal of Food, Agriculture and Veterinary Sciences, 7(12): 772–778. | en |
dc.references | Morley, K.S., Webb, P.B., Tokareva, N.V. 2007. Synthesis and characterisation of advanced UHMWPE/silver nanocomposites for biomedical applications. European Polymer Journal, 43(2): 307–314. | en |
dc.references | Mousavi, F.P., Pour, H.H., Nasab, A.H., Rajabalipour, A.A., Barouni, M. 2015. Investigation into shelf life of fresh dates and pistachios in a package modified with nano-silver. Global Journal of Health Science, 8: 134–144. | en |
dc.references | Nia, J.R. 2009. Using of Nanosilver in Poultry, Livestock and Aquatics Industry. Google Patents US20090028947A1. | en |
dc.references | Nowack, B., Krug, H.F., Height, M. 2011. 120 years of nanosilver history: Implications for policy makers. Environmental Science and Technology, 45: 1177–1183. | en |
dc.references | Panigrahi, S., Kundh, S., Ghosh, S.K., Nath, S., Pal, T. 2004. General method of synthesis for metal nanoparticles. Journal of Nanoparticle Research, 6: 411–414. | en |
dc.references | Peter, A., Mihaly-Cozmuta, L., Mihaly-Cozmuta, A., Nicula, C., Indrea, E., Barbu, T.L. 2014. Testing the preservation activity of Ag-TiO2-Fe and TiO2 composites included in the polyethylene during orange juice storage. Journal of Food Process Engineering, 37(6): 596–608. | en |
dc.references | Pokrowiecki, R., Mielczarek, A. 2012. Wybrane przykłady wykorzystania nanocząsteczek srebra w procedurach medycznych. Nowa Stomatologia, 3: 117–121. | en |
dc.references | Rabani, M., Aref, P., Askarizadeh, N., Ashrafitamay, I. 2019. Comparison of the antibacterial effect of nanosilver and chlorhexidine mouthwash on Streptococcus mutans (invitro). Iranian Journal of Pediatric Dentistry, 15(1): 93–102. | en |
dc.references | Ramos, K., Gómez-Gómez, M., Cámara, C., Ramos, L. 2016. Silver speciation and characterization of nanoparticles released from plastic food containers by single particle ICPMS. Talanta, 151: 83–90. | en |
dc.references | Rezvani, E., Rafferty, A., McGuinness, C., Kennedy, J. 2019. Adverse effects of nano-silver on human health and the environment. Acta Biomaterialia, 94: 145–159. | en |
dc.references | Rosas-Hernández, H., Jiménez-Badillo, S., Martínez-Cuevas, P.P., Gracia-Espino, E., Terrones, H., Terrones, M., Hussain, S.M., Ali, S.F., González, C. 2009. Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Toxicology Letters, 191: 305–313. | en |
dc.references | Russel, A.D. 2003. Challenge testing: Principles and practice. International Journal of Cosmetics Science, 25: 147–153. | en |
dc.references | Rzeszutek, J., Matysiak, M., Czajka, M. 2014. Zastosowanie nanocząstek i nanomateriałów w medycynie. Hygeia Public Health, 49(3): 449–457. | en |
dc.references | Sahoo, S.K., Parveen, S., Panda, J.J. 2007. The present and future of nanotechnology in human health care. Nanomedicine: Nanotechnology, Biology, and Medicine, 3: 20–31. | en |
dc.references | Sahu, S.C., Zheng, J., Yourick, J.J., Sprando, R.L., Gao, X. 2015. Toxicogenomic responses of human liver HepG2 cells to silver nanoparticles. Journal of Applied Toxicology, 35(10): 1160–1168. | en |
dc.references | Sawosz, F., Pineda, L.M., Hotowy, A.M., Hyttel, P., Sawosz, E., Szmidt, M., Niemiec, T., Chwalibog, A. 2012. Nano-nutrition of chicken embryos. The effect of silver nanoparticles and glutamine on molecular responses, and the morphology of pectoral muscle. Journal of Baltic Studies, 2: 29–45. | en |
dc.references | Shahverdi, A.R., Fakhimi, A., Shahverdi, H.R., Minaian, S. 2007. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine, 3(2): 168–171. | en |
dc.references | Sharifi Rad, J., Hoseini Alfatemi, S., Sharifi Rad, M., Iriti M. 2014. Antimicrobial Synergic Effect of Allicin and Silver Nanoparticles on Skin Infection Caused by Methicillin-Resistant Staphylococcus aureus spp. Annals of Medical Health Science Research, 4(6): 863–868. | en |
dc.references | Shi, J., Wang, L., Zhang, J., Ma, R., Gao, J., Liu, Y., Zhang, C., Zhang, Z. 2014. A tumor-targeting near-infrared laser-triggered drug delivery system based on GO-Ag nanoparticles for chemo-photothermal therapy and X-ray imaging. Biomaterials, 35(22): 5847–5861. | en |
dc.references | Singh, M., Movia, D., Mahfoud, O.K., Volkov, Y., Prina-Mello, A. 2013. Silver nanowires as prospective carriers for drug delivery in cancer treatment: An in vitro biocompatibility study on lung adenocarcinoma cells and fibroblasts. European Journal of Nanomedicine, 5(4): 195–204. | en |
dc.references | Singh, M., Sahareen, T. 2017. Investigation of cellulosic packets impregnated with silver nanoparticles for enhancing shelf-life of vegetables. LWT Food Science and Technology, 86: 116–122. | en |
dc.references | Song, W., Anselmo, A.C., Huang, L. 2019. Nanotechnology intervention of the microbiome for cancer therapy. Nature Nanotechnology, 14: 1093–1103. | en |
dc.references | Su, S., Kang, P.M. 2020. Systemic review of biodegradable nanomaterials in nanomedicine. Nanomaterials, 10: 656. | en |
dc.references | Su, W., Ma, L., Wu, S.H., Li, W., Tang, J.X., Deng, J., Liu, J.X. 2017. Effect of Surface modification of silver nanoparticles on the proliferation of human lung squamous cel carcinoma (HTB182) and bronchial epithelial (HBE) cells in vitro. Journal of Biomedicine and Nanotechnology, 13(10): 1281–1291. | en |
dc.references | Sun, R.W.-Y., Chen, R., Chung, N.P.-Y., Ho, C.-M., Lin, C.-L.S., Che, C.-M. 2005. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chemical Communications, 40: 5059–5061. | en |
dc.references | Szymański, P., Markowicz, M., Mikiciuk-Olasik, E. 2012. Zastosowanie nanotechnologii w medycynie i farmacji. LAB, 17(1): 51–56. | en |
dc.references | Tavakoli, H., Rastegar, H., Taherian, M., Somadi, M., Rostami, H. 2017. The effect of nano-silver packaging in increasing the shelf life of nuts: An in vitro model. Italian Journal of Food Safety, 6: 6874. | en |
dc.references | Trickler, W.J., Lantz, S.M., Murdock, R.C. 2018. Silver nanoparticle induced blood–brain barier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicological Sciences, 118: 160–170. | en |
dc.references | Trop, M., Novak, M., Rodl, S. 2006. Silver-coated dressings acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. The Journal of Trauma and Acute Care Surgery, 60(1): 648–652. | en |
dc.references | Tsai, C-H., Whiteley, C.G., Lee, D-J. 2019. Interactions between HIV-1 protease, silver nanoparticles, and specific peptides. Journal of the Taiwan Institute of Chemical Engineers, 103: 20–32. | en |
dc.references | Tymczyna, L., Chmielowiec-Korzeniowska, A., Drabik, A. 2007. The effectiveness of various biofiltration substrates in removing bacteria, endotoxins, and dust from ventilation system exhaust from a chicken hatchery. Poultry Science, 86(10): 2095–2100. | en |
dc.references | Vasile, C., Râpă, M., Moujl, S., Stan, M., Macavei, S., Darie-Niţă, R., Barbu, T.L., Vodnar, D., Popa, E., Ştefan, R. 2017. New PLA/ZnO: Cu/Ag bionanocomposites for food packaging. Express Polymer Letters, 11(7): 531–544. | en |
dc.references | Wagener, S., Dommershausen, N., Jungnickel, H., Laux, P., Mitrano, D., Nowack, B., Schneider, G., Luch, A. 2016. Textile functionalization and its effects on the release of silver nanoparticles into artificial sweat. Environmental Science and Technology, 50(11): 5927–5934. | en |
dc.references | Wang, J., Che, B., Zhang, L.W., Dong, G., Luo, Q., Xin, L. 2017. Comparative genotoxicity of silver nanoparticles in human liver HepG2 and lung epithelial A549 cells. Journal of Applied Toxicology, 37(4): 495–501. | en |
dc.references | Wang, Y., Chen, L., Liu, P. 2012. Biocompatible Triplex Ag-SiO2-mTiO2 Core-Shell Nanoparticles for Simultaneous Fluorescence-SERS Bimodal Imaging and Drug Delivery. Chemistry a European Journal, 18(19): 5935–5943. | en |
dc.references | Wang, Y., Newell, B.B., Irudayaraj, J. 2012. Folic acid protected silver nanocarriers for targeted drug delivery. Journal of Biomedicine and Nanotechnology, 8(5): 751–759. | en |
dc.references | Wojnicki, M., Tokarski, T., Hessel, V., Fitznera, K., Luty-Błochoa, M. 2019. 2H and 4H silver colloidal suspension synthesis, as a new potential drug carrier. Chemical Engineering Journal, 382: 1–22. | en |
dc.references | Xu, J., Han, X., Liu, H., Hu, Y. 2006. Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 273: 179–183. | en |
dc.references | Yamanaka, M., Hara, K., Kudo, J. 2005. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Applied and Environmental Microbiology, 71(11): 7589–7593. | en |
dc.references | Yoshida, K., Tanagawa, M., Matsumoto, S., Yamada, T., Atsuta, M. 1999. Antibacterial activity of resin composites with silver-containing materials. European Journal of Oral Science, 107(4): 290–296. | en |
dc.contributor.authorEmail | Kędzierska, Marta - marta.kedzierska1@biol.uni.lodz.pl | |
dc.contributor.authorEmail | Miłowska, Katarzyna - marta.kedzierska1@biol.uni.lodz.pl | |
dc.identifier.doi | 10.18778/1730-2366.16.10 | |
dc.relation.volume | 17 | |