Show simple item record

dc.contributor.authorGonera, Cezary
dc.contributor.authorMaślanka, Paweł
dc.contributor.authorAndrzejewski, Krzysztof
dc.contributor.authorGonera, Joanna
dc.contributor.authorKosinski, Piotr
dc.contributor.authorBrihaye, Yves
dc.date.accessioned2021-09-30T07:35:37Z
dc.date.available2021-09-30T07:35:37Z
dc.date.issued2019
dc.identifier.citationAndrzejewski, K., Brihaye, Y., Gonera, C. et al. The covariance of chiral fermions theory. J. High Energ. Phys. 2019, 11 (2019). https://doi.org/10.1007/JHEP08(2019)011pl_PL
dc.identifier.urihttp://hdl.handle.net/11089/39245
dc.description.abstractThe quasiclassical theory of massless chiral fermions is considered. The effective action is derived using time-dependent variational principle which provides a clear interpretation of relevant canonical variables. As a result their transformation properties under the action of Lorentz group are derived from first principles.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Naturepl_PL
dc.relation.ispartofseriesJournal of High Energy Physics;11
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSpace-Time Symmetriespl_PL
dc.subjectGauge Symmetrypl_PL
dc.titleThe covariance of chiral fermions theorypl_PL
dc.typeArticlepl_PL
dc.page.number11pl_PL
dc.contributor.authorAffiliationDepartment of Computer Science, Faculty of Physics and Applied Informatics, University of Lodz, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Computer Science, Faculty of Physics and Applied Informatics, University of Lodz, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Computer Science, Faculty of Physics and Applied Informatics, University of Lodz, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Computer Science, Faculty of Physics and Applied Informatics, University of Lodz, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Computer Science, Faculty of Physics and Applied Informatics, University of Lodz, Lodz, Polandpl_PL
dc.contributor.authorAffiliationPhysique-Mathématique, Université de Mons-Hainaut, Mons, Belgiumpl_PL
dc.identifier.eissn1029-8479
dc.referencesD.T. Son and P. Surówka, Hydrodynamics with Triangle Anomalies, Phys. Rev. Lett.103 (2009) 191601pl_PL
dc.referencesR. Loganayagam, Anomaly Induced Transport in Arbitrary Dimensionspl_PL
dc.referencesR. Loganayagam and P. Surowka, Anomaly/Transport in an Ideal Weyl gas, JHEP04 (2012) 097pl_PL
dc.referencesS. Dubovsky, L. Hui, A. Nicolis and D.T. Son, Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev.D 85 (2012) 085029pl_PL
dc.referencesS. Dubovsky, L. Hui and A. Nicolis, Effective field theory for hydrodynamics: Wess-Zumino term and anomalies in two spacetime dimensions, Phys. Rev.D 89 (2014) 045016pl_PL
dc.referencesK. Fukushima, D.E. Kharzeev and H.J. Warringa, The Chiral Magnetic Effect, Phys. Rev.D 78 (2008) 074033pl_PL
dc.referencesK. Fukushima, D.E. Kharzeev and H.J. Warringa, Real-time dynamics of the Chiral Magnetic Effect, Phys. Rev. Lett.104 (2010) 212001pl_PL
dc.referencesG. Basar, G.V. Dunne and D.E. Kharzeev, Chiral Magnetic Spiral, Phys. Rev. Lett.104 (2010) 232301pl_PL
dc.referencesM.A. Stephanov and Y. Yin, Chiral Kinetic Theory, Phys. Rev. Lett.109 (2012) 162001pl_PL
dc.referencesD.T. Son and N. Yamamoto, Berry Curvature, Triangle Anomalies and the Chiral Magnetic Effect in Fermi Liquids, Phys. Rev. Lett.109 (2012) 181602pl_PL
dc.referencesD.T. Son and N. Yamamoto, Kinetic theory with Berry curvature from quantum field theories, Phys. Rev.D 87 (2013) 085016pl_PL
dc.referencesJ.-W. Chen, S. Pu, Q. Wang and X.-N. Wang, Berry Curvature and Four-Dimensional Monopoles in the Relativistic Chiral Kinetic Equation, Phys. Rev. Lett.110 (2013) 262301pl_PL
dc.referencesJ.-W. Chen, J.-y. Pang, S. Pu and Q. Wang, Kinetic equations for massive Dirac fermions in electromagnetic field with non-Abelian Berry phase, Phys. Rev.D 89 (2014) 094003pl_PL
dc.referencesM. Stone and V. Dwivedi, Classical version of the non-Abelian gauge anomaly, Phys. Rev.D 88 (2013) 045012pl_PL
dc.referencesV. Dwivedi and M. Stone, Classical chiral kinetic theory and anomalies in even space-time dimensions, J. Phys.A 47 (2014) 025401pl_PL
dc.referencesM. Stone, V. Dwivedi and T. Zhou, Berry Phase, Lorentz Covariance and Anomalous Velocity for Dirac and Weyl Particles, Phys. Rev.D 91 (2015) 025004pl_PL
dc.referencesM. Stone, V. Dwivedi and T. Zhou, Wigner Translations and the Observer Dependence of the Position of Massless Spinning Particles, Phys. Rev. Lett.114 (2015) 210402pl_PL
dc.referencesJ.-Y. Chen, D.T. Son, M.A. Stephanov, H.-U. Yee and Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett.113 (2014) 182302pl_PL
dc.referencesE. Megias and M. Valle, Second-order partition function of a non-interacting chiral fluid in 3+1 dimensions, JHEP11 (2014) 005pl_PL
dc.referencesK.A. Sohrabi, Microscopic Study of Vorticities in Relativistic Chiral Fermions, JHEP 03 (2015) 014pl_PL
dc.referencesC. Manuel and J.M. Torres-Rincon, Chiral transport equation from the quantum Dirac Hamiltonian and the on-shell effective field theory, Phys. Rev.D 90 (2014) 076007pl_PL
dc.referencesP. Zhang and P.A. Horváthy, Anomalous Hall Effect for semiclassical chiral fermions, Phys. Lett.A 379 (2014) 507pl_PL
dc.referencesC. Duval and P.A. Horvathy, Chiral fermions as classical massless spinning particles, Phys. Rev.D 91 (2015) 045013pl_PL
dc.referencesC. Duval, M. Elbistan, P.A. Horváthy and P.M. Zhang, Wigner-Souriau translations and Lorentz symmetry of chiral fermions, Phys. Lett.B 742 (2015) 322pl_PL
dc.referencesK. Andrzejewski, A. Kijanka-Dec, P. Kosinski and P. Maslanka, Chiral fermions, massless particles and Poincaré covariance, Phys. Lett.B 746 (2015) 417pl_PL
dc.referencesJ.-M. Souriau, Structure of Dynamical Systems: A Sympletic View of Physics, Birkhäuser, Boston U.S.A. (1997)pl_PL
dc.referencesB.S. Skagerstam, Localization of massless spinning particles and the Berry phasepl_PL
dc.referencesT.D. Newton and E.P. Wigner, Localized States for Elementary Systems, Rev. Mod. Phys.21 (1949) 400pl_PL
dc.referencesK. Yu. Bliokh and Yu. P. Bliokh, Topological spin transport of photons: The Optical Magnus Effect and Berry Phase, Phys. Lett.A 333 (2004) 181pl_PL
dc.referencesM. Onoda, S. Murakami and N. Nagaosa, Hall Effect of Light, Phys. Rev. Lett.93 (2004) 083901pl_PL
dc.referencesC. Duval, Z. Horvath and P. Horvathy, Geometrical spinoptics and the optical Hall effect, J. Geom. Phys.57 (2007) 925pl_PL
dc.referencesC. Duval, Z. Horvath and P.A. Horvathy, Fermat principle for spinning light, Phys. Rev.D 74 (2006) 021701pl_PL
dc.referencesK. Bliokh, A. Niv, V. Kleiner and E. Hasman, Geometrodynamics of Spinning Light, Nature Photon.2 (2008) 748pl_PL
dc.referencesK. Bliokh, Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium, J. Opt.A 11 (2009) 094009pl_PL
dc.referencesK.Y. Bliokh and F. Nori, Relativistic Hall Effect, Phys. Rev. Lett.108 (2012) 120403pl_PL
dc.referencesL. Landau and R. Peierls, Time of the Energy Emission in the Hydrogen Atom and Its Electrodynamical Background, Z. Phys.69 (1931) 56pl_PL
dc.referencesV.B. Berestetskii, E.M. Lifshitz and L.P. Pitaevskii, Relativistic Quantum Theory 1, Pergamon Press, Oxford U.K. (1971)pl_PL
dc.referencesS. Weinberg, Feynman Rules for Any Spin, Phys. Rev.133 (1964) B1318pl_PL
dc.referencesS. Weinberg, Feynman Rules for Any Spin. 2. Massless Particles, Phys. Rev.134 (1964) B882pl_PL
dc.referencesS. Weinberg, Photons and Gravitons in s Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass, Phys. Rev.135 (1964) B1049pl_PL
dc.referencesS. Weinberg, The Quantum Theory of Fields. Vol.I, Cambridge University Press, Cambridge U.K. (1995)pl_PL
dc.referencesM.-C. Chang and Q. Niu, Berry phase, hyperorbits and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands, Phys. Rev.B 53 (1996) 7010pl_PL
dc.referencesG. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects, Phys. Rev.B 59 (1999) 14915pl_PL
dc.referencesD. Culcer, Y. Yao and Q. Niu, Coherent wave-packet evolution in coupled bands, Phys. Rev.B 72 (2005) 085110pl_PL
dc.referencesM.-C. Chang and Q. Niu, Berry curvature, orbital moment, and effective quantum theory of electrons in electromagnetic fields, J. Phys. Condens. Matter20 (2008) 193202pl_PL
dc.referencesYu. V. Novozhilov, Introduction to Elementary Particle Theory, Pergamon Press, Oxford U.K. (1975)pl_PL
dc.identifier.doihttps://doi.org/10.1007/JHEP08(2019)011
dc.disciplinenauki fizycznepl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe