Show simple item record

dc.contributor.authorStawska, Zofia
dc.contributor.authorZieliński, Bartosz
dc.contributor.authorMilczarski, Piotr
dc.contributor.authorHłobaż, Artur
dc.contributor.authorMaślanka, Paweł
dc.contributor.authorKosiński, Piotr
dc.description.abstractIn the paper, the research on the process of optimizing the carbon footprint to obtain the low-carbon products is presented. The optimization process and limits were analyzed based on the CFOOD project co-financed by the Polish Research and Development Agency. In the article, the carbon footprint (CF) testing methods with particular emphasis on product life cycle assessment (LCA) are discussed. The main problem is that the energy received from the energy-meters per the production stage is not directly represented in the raw data set obtained from the factory because many production line machines are connected to a single measurement point. In the paper, we show that in some energy-demanding production stages connected with cooling processes the energy used for the same stage and similar production can differ even 25-40%. That is why the energy optimization in the production can be very demandingpl_PL
dc.publisherPolish Academy of Sciences Committee of Electronics and Telecommunicationspl_PL
dc.relation.ispartofseriesInternational Journal of Electronics and Telecommunications;66
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.subjectcarbon footprintpl_PL
dc.subjectgreenhouse gas emissionpl_PL
dc.subjectLCA methodpl_PL
dc.subjectsustainable developmentpl_PL
dc.titleThe Carbon Footprint Methodology in CFOOD Projectpl_PL
dc.contributor.authorAffiliationUniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanejpl_PL
dc.referencesUnited Nations Framework Convention on Climate Change, published 1.07.2019pl_PL
dc.referencesKyoto Protocol to the United Nations Framework Convention on Climate Change. UN Treaty Database, published 27.06.2019pl_PL
dc.referencesParis Agreement. United Nations Treaty Collection, published 27.06.2019.pl_PL
dc.referencesEuropean Environment Agency, Increasing energy consumption is slowing EU progress in the use of renewable energy sources and improving energy efficiency (in polish), published 22.03.2019pl_PL
dc.referencesI. Pavlova-Marciniak, “Anti–smog solutions and renewable energy resources development as a way to achieve low – carbon economy”, Electrotechnical review, 95 (2019), nr.8, 1-4pl_PL
dc.referencesH. C. J. Godfray, “Food security: The challenge of feeding 9 billion people”, Science 327 (2010), 812–818pl_PL
dc.referencesP. Meyfroidt, “Trade-offs between environment and livelihoods: Bridging the global land use and food security discussions”, Glob. Food Secur. 16 (2018), 9-16pl_PL
dc.referencesM. Wróbel-Jędrzejewska, U. Stęplewska, E. Polak, „Ślad środowiskowy technologii spożywczej” (in polish), Przemysł fermentacyjny i owocowowarzywny, (2019), 4, 26-31pl_PL
dc.referencesM. Wróbel-Jędrzejewska, U. Stęplewska, E. Polak, „Wskaźniki oddziaływania przemysłu spożywczego na środowisko” (in polish), Przemysł Spożywczy, (2015), 9, 8-11pl_PL
dc.referencesS. A. Ali, L. Tedone, G. De Mastro, “Optimization of the environmental performance of rainfed durum wheat by adjusting the management practices”, J. Clean. Prod., 87 (2015), 105–118pl_PL
dc.referencesD. Bagchi, S. Biswas, Y. Narahari, P. Suresh, L. U. Lakshmi, N. Viswanadham, S. V. Subrahmanya, “Carbon Footprint Optimization: Game Theoretic Problems and Solutions”, ACM SIGecom Exchanges, Vol. 11, No. 1, 2012, pp. 34-38pl_PL
dc.referencesA.L. Radu, M.A. Scrieciu, D.M. Caracota, “Carbon footprint analysis: Towards a projects evaluation model for promoting sustainable development”, Proc. Econ. Finance, 6 (2013) 353-363pl_PL
dc.referencesZ. Cuixia, L. Conghu, Z. Xi, “Optimization control method for carbon footprint of machining process”, Int J Adv Manuf Technol , 92 (2017) 1601–1607pl_PL
dc.referencesC. Zhang, C. Liu, L. Liu, “Diagnosis and application of carbon footprint for machining workshop on energy saving and emission reduction”, Comput. Model. New Technol, 18 (2014) 265–270pl_PL
dc.referencesB. He, W. Tang, J. Wang, S. Huang, Z. Deng, Y. Wang, “Low-carbon conceptual design based on product life cycle assessment”, Int J Adv Manuf Technol, 81(5) (2015) 863–874pl_PL
dc.referencesISO14040 (2006) Environmental management-life cycle assessment: principles and framework. International Organization for Standardization, Genevapl_PL
dc.referencesISO14064-1 (2018) Greenhouse gases - Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals. International Organization for Standardization, Genevapl_PL
dc.referencesPAS 2050 (2011) “The Guide to PAS2050-2011, Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standards Institutionpl_PL
dc.referencesJ IPCC Guidelines for National Greenhouse Gas Inventories (2006), URL:, published 27.06.2019pl_PL
dc.referencesM. Kulak, T. Nemecek, E. Frossard, G. Gaillard, “Eco-efficiency improvement by using integrative design and life cycle assessment. The case study of alternative bread supply chains in France”, J. Clean. Prod., 112 (2016), 2452–2461pl_PL
dc.referencesM. A. Renouf, C. Renaud-Gentie, A. Perrin, C. Kanyarushoki, F. Jourjon, “Effectiveness criteria for customised agricultural life cycle assessment tools”, J. Clean. Prod., 179 (2018), 246–254pl_PL
dc.referencesD. Perez-Neira, A. Grollmus-Venegas, “Life-cycle energy assessment and carbon footprint of peri-urban horticulture. A comparative case study of local food systems in Spain”, Landscape and Urban Planning, 172 (2018), 60-68pl_PL
dc.referencesA. Nabavi-Pelesaraei, S. Rafiee, S. S. Mohtasebi, H. HosseinzadehBandbafha, K. Chau, “Energy consumption enhancement and environmental life cycle assessment in paddy production using optimization techniques”, J. Clean. Prod., 162 (2017), 571-586pl_PL
dc.referencesISO/TS 14067 (2018) Greenhouse gases - Carbon footprint of products - Requirements and guidelines for quantification. International Organization for Standardization, Genevapl_PL
dc.referencesS. Elhedhli, R. Merrick, “Green supply chain network design to reduce carbon emissions”, Transp Res Part D, 17 (2012), 370-379pl_PL
dc.referencesD. I. Patricio, R. Rieder, “Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review”, Computers and Electronics in Agriculture, 153 (2018) , 69-81pl_PL
dc.referencesJ. Kulczycka, M. Wernicka, „Metody i wyniki obliczania śladu węglowego działalności podmiotów branży energetycznej i wydobywczej” (in polish), Zeszyty naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk, 89 (2015), 133-142pl_PL
dc.referencesANSI/ITSDF B56.1-2016 – Safety Standard for Low Lift and High Lift Truckspl_PL
dc.referencesShrink That Footprint, URL:, last accessed: 31 May 2020pl_PL
dc.referencesA. Moro, L. Lonza, “Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles”, Transportation Research Part D, 64 (2018) 5-14pl_PL
dc.referencesJ. Kulczycka, M. Wernicka, „Zarządzanie śladem węglowym w przedsiębiorstwach w Polsce – bariery i korzyści” (in polish), Polityka energetyczna, t.18 z.2 (2014), 61-72pl_PL
dc.referencesP. Milczarski, A. Hłobaż, P. Maślanka, B. Zieliński, Z. Stawska, P.Kosiński, "Carbon footprint calculation and optimization approach for CFOOD project", CEUR Workshop Proceedings 2683 (2019) 30-34pl_PL
dc.referencesP. Milczarski, B. Zieliński, Z. Stawska, A. Hłobaż, P. Maślanka, P. Kosiński, "Machine Learning Application in Energy Consumption Calculation and Assessment in Food Processing Industry", ICAISC (2) (2020), Springer LNAI 12416, 369-379pl_PL

Files in this item


This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe