Pokaż uproszczony rekord

dc.contributor.authorStudniarski, Marcin
dc.contributor.authorStasiak, Aleksandra
dc.contributor.authorMichalak, Anna
dc.date.accessioned2021-09-21T09:11:47Z
dc.date.available2021-09-21T09:11:47Z
dc.date.issued2020
dc.identifier.citationStudniarski, M., Michalak, A. & Stasiak, A. Necessary and Sufficient Conditions for Robust Minimal Solutions in Uncertain Vector Optimization. J Optim Theory Appl 186, 375–397 (2020). https://doi.org/10.1007/s10957-020-01714-wpl_PL
dc.identifier.issn0022-3239
dc.identifier.urihttp://hdl.handle.net/11089/39115
dc.descriptionMathematics Subject Classification: 49J52, 49J53, 49N30, 90C31.pl_PL
dc.description.abstractWe introduce a new notion of a vector-based robust minimal solution for a vector-valued uncertain optimization problem, which is defined by means of some open cone. We present necessary and sufficient conditions for this kind of solution, which are stated in terms of some directional derivatives of vector-valued functions. To prove these results, we apply the methods of set-valued analysis. We also study relations between our definition and three other known optimality concepts. Finally, for the case of scalar optimization, we present two general algorithm models for computing vector-based robust minimal solutions.pl_PL
dc.description.sponsorshipThe authors are grateful to the University of Łódź for providing necessary funds and conditions needed to complete this research.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Naturepl_PL
dc.relation.ispartofseriesJournal of Optimization Theory and Applications;186
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectUncertain optimizationpl_PL
dc.subjectRobust minimal solutionspl_PL
dc.subjectSet-valued analysispl_PL
dc.subjectRadial derivativespl_PL
dc.titleNecessary and Sufficient Conditions for Robust Minimal Solutions in Uncertain Vector Optimizationpl_PL
dc.typeArticlepl_PL
dc.page.number375–397pl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Computer Science, University of Łódź, S. Banacha No. 22, 90-238, Łódź, Polandpl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Computer Science, University of Łódź, S. Banacha No. 22, 90-238, Łódź, Polandpl_PL
dc.contributor.authorAffiliationFaculty of Economics and Sociology, University of Łódź, Rewolucji 1905 r. no. 41, 90-214, Łódź, Polandpl_PL
dc.identifier.eissn1573-2878
dc.referencesKöbis, E., Tammer, C., Yao, J.C.: Optimality conditions for set-valued optimization problems based on set approach and applications in uncertain optimization. J. Nonlinear Convex Anal. 18(6), 1001–1014 (2017)pl_PL
dc.referencesChuong, T.D.: Optimality and duality for robust multiobjective optimization problems. Nonlinear Anal. 134, 127–143 (2016)pl_PL
dc.referencesIde, J., Schöbel, A.: Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts. OR Spectr. 38(1), 235–271 (2016)pl_PL
dc.referencesKlamroth, K., Köbis, E., Schöbel, A., Tammer, C.: A unified approach to uncertain optimization. Eur. J. Oper. Res. 260(2), 403–420 (2017)pl_PL
dc.referencesTaa, A.: Set-valued derivatives of multifunctions and optimality conditions. Numer. Funct. Anal. Optim. 19(1–2), 121–140 (1998)pl_PL
dc.referencesHa, T.X.D.: Optimality conditions for several types of efficient solutions of set-valued optimization problems. In: Pardalos, P.M., et al. (eds.) Springer Optimization and Its Applications, vol. 35. Springer, New York (2010)pl_PL
dc.referencesAnh, N.L.H., Khanh, P.Q., Tung, L.T.: Higher order radial derivatives and optimality conditions in nonsmooth vector optimization. Nonlinear Anal. 74, 7365–7379 (2011)pl_PL
dc.referencesKhan, A.A., Tammer, C., Zălinescu, C.: Set-Valued Optimization: An Introduction with Applications. Springer, Heidelberg (2015)pl_PL
dc.referencesRahimi, M., Soleimani-damaneh, M.: Robustness in deterministic vector optimization. J. Optim. Theory Appl. 179, 137–162 (2018)pl_PL
dc.referencesBotte, M., Schöbel, A.: Dominance for multi-objective robust optimization concepts. Eur. J. Oper. Res. 273, 430–440 (2019)pl_PL
dc.referencesLi, S.J., Sun, X.K., Zhu, S.K.: Higher-order optimality conditions for strict minimality in set-valued optimization. J. Nonlinear Convex Anal. 13(2), 281–291 (2012)pl_PL
dc.referencesShubert, B.O.: A sequential method seeking the global maximum of a function. SIAM J. Numer. Anal. 9(3), 379–388 (1972)pl_PL
dc.identifier.doi10.1007/s10957-020-01714-w
dc.disciplinematematykapl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe