Pokaż uproszczony rekord

dc.contributor.authorSzafrańska, Katarzyna
dc.contributor.authorPosmyk, Malgorzata Maria
dc.contributor.authorReiter, Russel
dc.contributor.editorLove, John
dc.date.accessioned2021-09-20T13:16:26Z
dc.date.available2021-09-20T13:16:26Z
dc.date.issued2017
dc.identifier.citationSzafrańska K, Reiter RJ and Posmyk MM (2017) Melatonin Improves the Photosynthetic Apparatus in Pea Leaves Stressed by Paraquat via Chlorophyll Breakdown Regulation and Its Accelerated de novo Synthesis. Front. Plant Sci. 8:878. doi: 10.3389/fpls.2017.00878pl_PL
dc.identifier.urihttp://hdl.handle.net/11089/39114
dc.description.abstractThe positive effect of melatonin on the function of the photosynthetic apparatus is known, but little is known about the specific mechanisms of melatonin’s action in plants. The influence of melatonin on chlorophyll metabolism of 24-day-old Pisum sativum L. seedlings during paraquat (PQ)-induced oxidative stress was investigated in this study. Seeds were hydro-primed with water (H), 50 and 200 µM melatonin/water solutions (H-MEL50, H-MEL200), while non-primed seeds were used as controls (C). Increases in chlorophyllase activity (key enzyme in chlorophyll degradation) and 5-aminolevulinic acid contents (the first compound in the porphyrin synthesis pathway) were observed in H-MEL50 and H-MEL200 leaf disks. This suggests that melatonin may accelerate damaged chlorophyll breakdown and its de novo synthesis during the first hours of PQ treatment. Elevated level of pheophytin in control leaf disks following 24 h of PQ incubation probably was associated with an enhanced rate of chlorophyll degradation through formation of pheophytin as a chlorophyll derivative. This validates the hypothesis that chlorophyllide, considered for many years, as a first intermediate of chlorophyll breakdown is not. This is indicated by the almost unchanged chlorophyll to chlorophyllide ratio after 24 h of PQ treatment. However, prolonged effects of PQ-induced stress (48 h) revealed extensive discolouration of control and water-treated leaf disks, while melatonin treatment alleviated PQ-induced photobleaching. Also the ratio of chlorophyll to chlorophyllide and porphyrin contents were significantly higher in plants treated with melatonin, which may indicate that this indoleamine both retards chlorophyll breakdown and stimulates its de novo synthesis during extended stress. We concluded that melatonin added into the seeds enhances the ability of pea seedlings to accelerate chlorophyll breakdown and its de novo synthesis before stress appeared and for several hours after, while during prolonged PQ incubation melatonin delays chlorophyll degradation.pl_PL
dc.language.isoplpl_PL
dc.publisherFrontierspl_PL
dc.relation.ispartofseriesFrontiers in Plant Science;8
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectALApl_PL
dc.subjectchlorophyllpl_PL
dc.subjectchlorophyllasepl_PL
dc.subjectchlorophyllidepl_PL
dc.subjecthydroprimingpl_PL
dc.subjectmelatoninpl_PL
dc.subjectoxidative stresspl_PL
dc.subjectpheophytinpl_PL
dc.titleMelatonin Improves the Photosynthetic Apparatus in Pea Leaves Stressed by Paraquat via Chlorophyll Breakdown Regulation and Its Accelerated de novo Synthesispl_PL
dc.typeArticlepl_PL
dc.rights.holder© 2017 Szafrańska, Reiter and Posmykpl_PL
dc.page.number10pl_PL
dc.contributor.authorAffiliationLaboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland,pl_PL
dc.contributor.authorAffiliationLaboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Cellular and Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, TX, United Statespl_PL
dc.identifier.eissn1664-462X
dc.referencesAPHA, Awwa, WEF, I. (2005). Standard Methods for the Examination of Water and Wastewater, 21st Edn. Washington DC: American Public Health Association.pl_PL
dc.referencesArnao, M. B., and Hernandez–Ruiz, J. (2009). Protective effect of melatonin against chlorophyll degradation during senescence of barley leaves. J. Pineal Res. 46, 58–63. doi: 10.1111/j.1600-079X.2008.00625.xpl_PL
dc.referencesArnon, D. T. (1949). Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15. doi: 10.1104/pp.24.1.1pl_PL
dc.referencesAshraf, M., and Harris, P. J. C. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica 51, 163–190. doi: 10.1007/s11099-013-0021-6pl_PL
dc.referencesBradford, M. M. (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dry binding. Anal. Biochem. 72, 248–154. doi: 10.1016/0003-2697(76)90527-3pl_PL
dc.referencesChrist, B., and Hörtensteiner, S. (2014). Mechanism and significance of chlorophyll breakdown. J. Plant Growth Regul. 33, 4–20. doi: 10.1007/s00344-013-9392-ypl_PL
dc.referencesCzarnecki, O., and Grimm, B. (2012). Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. J. Exp. Bot. 63, 1675–1687. doi: 10.1093/jxb/err437pl_PL
dc.referencesDissanayake, P. K., Yamauchi, N., and Shigyo, M. (2012). Presence of pheophytin and its formation as a chlorophyll derivative in selected crop species. J. Agric. Sci. 7, 127–134. doi: 10.4038/jas.v7i3.4876pl_PL
dc.referencesFang, Z., Bouwkamp, J. C., and Solomos, T. (1998). Chlorophyllase activities and chlorophyll degradation during leaf senescence in nonyellowing mutant and wild type of Phaseolus vulgaris L. J. Exp. Bot. 49, 503–510.pl_PL
dc.referencesGalano, A., Tan, D. X., and Reiter, R. J. (2013). On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK. J. Pineal Res. 54, 245–257. doi: 10.1111/jpi.12010pl_PL
dc.referencesGupta, S., Gupta, S. M., Sane, A. P., and Kumar, N. (2012). Chlorophyllase in Piper betle L. has a role in chlorophyll homeostasis and senescence dependent chlorophyll breakdown. Mol. Biol. Rep. 39, 7133–7142. doi: 10.1007/s11033-012-1545-8pl_PL
dc.referencesGuyer, L., Schelbert Hofstetter, S., Christ, B., Lira, B. S., Rossi, M., and Hörtensteiner, S. (2014). Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato. Plant Physiol. 166, 44–56. doi: 10.1104/pp.114.239541pl_PL
dc.referencesHarpaz-Saad, S., Azoulay, T., Arazi, T., Ben-Yaakov, E., Mett, A., Shiboleth, Y. M., et al. (2007). Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is post-translationally regulated. Plant Cell 19, 1007–1022. doi: 10.1105/tpc.107.050633pl_PL
dc.referencesHawkes, T. R. (2014). Mechanisms of resistance to paraquat in plants. Pest Manag. Sci. 70, 1316–1323. doi: 10.1002/ps.3699pl_PL
dc.referencesHörtensteiner, S. (2006). Chlorophyll degradation during senescence. Annu. Rev. Plant Biol. 57, 55–77. doi: 10.1146/annurev.arplant.57.032905.105212pl_PL
dc.referencesHu, X., Tanaka, A., and Tanaka, R. (2013). Simple extraction methods that prevent the artifactual conversion of chlorophyll to chlorophyllide during pigment isolation from leaf samples. Plant Methods 9:19. doi: 10.1186/1746-4811-9-19pl_PL
dc.referencesJibran, R., Hunter, D. A., and Dijkwel, P. P. (2013). Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol. Biol. 82, 547–561. doi: 10.1007/s11103-013-0043-2pl_PL
dc.referencesJisha, K. C., Vijayakumari, K., and Puthur, J. T. (2013). Seed priming for abiotic stress tolerance: an overview. Acta Physiol. Plant. 35, 1381–1396. doi: 10.1007/s11738-012-1186-5pl_PL
dc.referencesKalka, K., Fritsch, C., Bolsen, K., Verwohlt, B., and Goerz, G. (1997). Influence of indoles (melatonin, serotonin, and tryptophan) on the porphyrin metabolism in vitro. Skin Pharmacology 10, 221–224.pl_PL
dc.referencesKariola, T., Brader, G., Li, J., and Palva, E. T. (2005). Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell 17, 282–294. doi: 10.1105/tpc.104.025817pl_PL
dc.referencesKhan, M., Rozhon, W., and Poppenberger, B. (2014). The role of hormones in the aging of plants—a mini-review. Gerontology 60, 49–55. doi: 10.1159/000354334pl_PL
dc.referencesKołodziejczyk, I., Dzitko, K., Szewczyk, R., and Posmyk, M. M. (2016a). Exogenous melatonin improves corn (Zea mays L.) embryo proteome in seeds subjected to chilling stress. J. Plant Physiol. 193:77–56. doi: 10.1016/j.jplph.2016.01.012pl_PL
dc.referencesKołodziejczyk, I., Dzitko, K., Szewczyk, R., and Posmyk, M. M. (2016b). Exogenous melatonin expediently modifies proteome of maize (Zea mays L.) embryo during seed germination. Acta Physiol. Plant. 38:146 doi: 10.1007/s11738-016-2166-ypl_PL
dc.referencesLascano, R., Munaoz, N., Robert, G., Rodriguez, M., Melchiorre, M., Trippi, V., et al. (2012). Paraquat: An Oxidative Stress Inducer, Herbicides-Properties, Synthesis and Control of Weeds, ed Dr. Mohammed Nagib Hasaneen. InTech. Available online at: http://www.intechopen.com/books/herbicides-properties-synthesis-and-control-of-weeds/paraquat-an-oxidative-stress-inducerpl_PL
dc.referencesLiang, C., Zheng, G., Li, W., Wang, Y., Wu, H., Qian, Y., et al. (2015). Melatonin delays leaf senescence and enhances salt stress tolerance in rice. J. Pineal Res. 59, 91–101. doi: 10.1111/jpi.12243pl_PL
dc.referencesLichtenthaler, H. K., and Buschmann, C. (2001). “Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy,” in Current Protocols in Food Analytical Chemistry, eds R. E. Wrolstad, T. E. Acree, H. An, E. A. Decker, M. H. Penner, D. S. Reid, S. J. Schwartz, C. F. Shoemaker, and P. Sporns (New York, NY: John Wiley & Sons, Inc.), F4.3.1–F4.3.8.pl_PL
dc.referencesManchester, L. C., Coto-Montes, A., Boga, J. A., Andersen, L. P. H., Zhou, Z., Galano, A., et al. (2015). Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res. 59, 403–419. doi: 10.1111/jpi.12267pl_PL
dc.referencesMinguez-Mosquera, M. I., and Gallardo-Guerrero, L. G. (1996). Role of chlorophyllase in chlorophyll metabolism in olives cv. Gordal. Phytochemistry 41, 691–697. doi: 10.1016/0031-9422(95)00708-3pl_PL
dc.referencesPosmyk, M. M., Kuran, H., Marciniak, K., and Janas, K. M. (2008). Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. J. Pineal Res. 45, 24–31. doi: 10.1111/j.1600-079X.2007.00552.xpl_PL
dc.referencesRadojevič, M., and Bashkin, V. N. (2006). Practical Environmental Analysis. Chapter 4, 2nd Edn. Cambridge, UK: RSC Publishing.pl_PL
dc.referencesReiter, R. J., Mayo, J. C., Tan, D. X., Sainz, R. M., Alatorre-Jimenez, M., and Qin, L. (2016). Melatonin as an antioxidant: under promises but over delivers. J. Pineal Res. 61, 253–278. doi: 10.1111/jpi.12360pl_PL
dc.referencesReiter, R. J., Tan, D. X., Zhou, Z., Cruz, M. H., Fuentes-Broto, L., and Galano, A. (2015). Phytomelatonin: assisting plants to survive and thrive. Molecules 20, 7396–7437. doi: 10.3390/molecules20047396pl_PL
dc.referencesRodriguez, C., Kotler, M., Menendez-Pelaez, A., Antolín, I., Uría, H., and Reiter, R. J. (1994). Circadian rhythm in 5-aminolevulinate synthase mRNA levels in the Harderian gland of the Syrian hamster: involvement of light-dark cycle and pineal function. Endocrine 2, 863–868.pl_PL
dc.referencesSantos, C. V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hortic. 103, 93–99. doi: 10.1016/j.scienta.2004.04.009pl_PL
dc.referencesSarropoulou, V., Dimassi-Theriou, K., Therios, I., and Koukourikou-Petridou, M. (2012). Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium × Prunus cerasus). Plant Physiol. Biochem. 61, 162–168. doi: 10.1016/j.plaphy.2012.10.001pl_PL
dc.referencesSchelbert, S., Aubry, S., Burla, B., Agne, B., Kessler, F., Krupińska, K., et al. (2009). Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 21, 767–785. doi: 10.1105/tpc.108.064089pl_PL
dc.referencesSchenk, N., Schelbert, S., Kanwischer, M., Goldschmidt, E. E., Dörmann, P., and Hörtensteiner, S. (2007). The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. FEBS Lett. 581, 5517–5525. doi: 10.1016/j.febslet.2007.10.060pl_PL
dc.referencesSumanta, N., Haque, C. I., Nishika, J., and Suprakash, R. (2014). Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. 4, 63–69. doi: 10.1055/s-0033-1340072pl_PL
dc.referencesSzafrańska, K., Szewczyk, R., and Janas, K. M. (2014). Involvement of melatonin applied to Vigna radiata L. seeds in plant response to chilling stress. Cent. Eur. J. Biol. 9, 1117–1126. doi: 10.2478/s11535-014-0330-1pl_PL
dc.referencesSzafrańska, K., Reiter, R., and Posmyk, M. M. (2016). Melatonin application to Pisum sativum L. seeds positively influences the function of the photosynthetic apparatus in growing seedlings during paraquat-induced oxidative stress. Front. Plant Sci. 7:1663. doi: 10.3389/fpls.2016.01663pl_PL
dc.referencesTakamiya, K. I., Tsuchiya, T., and Ohta, H. (2000). Degradation pathway(s) of chlorophyll: what has gene cloning revealed? Trends Plant Sci. 5, 426–431. doi: 10.1016/S1360-1385(00)01735-0pl_PL
dc.referencesTan, D. X., Manchester, L. C., Esteban-Zubero, E., Zhou, Z., and Reiter, R. J. (2015). Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20, 18886–18906. doi: 10.3390/molecules201018886pl_PL
dc.referencesTanaka, A., and Tanaka, R. (2006). Chlorophyll metabolism. Curr. Opin. Plant Biol. 9, 248–255. doi: 10.1016/j.pbi.2006.03.011pl_PL
dc.referencesTuran, S., and Tripathy, B. C. (2015). Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings. Physiol. Plant. 153, 477–491. doi: 10.1111/ppl.12250pl_PL
dc.referencesWang, P., Sun, X., Li, C. H., Wei, Z., Liang, D., and Ma, F. (2013a). Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J. Pineal Res. 54, 292–302. doi: 10.1111/jpi.12017pl_PL
dc.referencesWang, P., Sun, X., Chang, C., Feng, F., Liang, D., Cheng, L., et al. (2013b). Delay in leaf senescence of Malus hupehensis by long-term melatonin application is associated with its regulation of metabolic status and protein degradation. J. Pineal Res. 55, 424–434. doi: 10.1111/jpi.12091pl_PL
dc.referencesWang, P., Yin, L., Liang, D., Chao, L. I., Ma, F., and Yue, Z. (2012). Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate–glutathione cycle. J. Pineal Res. 53, 11–20. doi: 10.1111/j.1600-079X.2011.00966.xpl_PL
dc.referencesWeeda, S., Zhang, N., Zhao, X., Ndip, G., Guo, Y., Buck, G. A., et al. (2014). Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS ONE 9:e93462. doi: 10.1371/journal.pone.0093462pl_PL
dc.contributor.authorEmailmalgorzata.posmyk@biol.uni.lodz.plpl_PL
dc.identifier.doi10.3389/fpls.2017.00878
dc.relation.volume878pl_PL
dc.disciplinenauki biologicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe