dc.contributor.author | Szafrańska, Katarzyna | |
dc.contributor.author | Posmyk, Malgorzata Maria | |
dc.contributor.author | Reiter, Russel | |
dc.contributor.editor | Love, John | |
dc.date.accessioned | 2021-09-20T13:16:26Z | |
dc.date.available | 2021-09-20T13:16:26Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Szafrańska K, Reiter RJ and Posmyk MM (2017) Melatonin Improves the Photosynthetic Apparatus in Pea Leaves Stressed by Paraquat via Chlorophyll Breakdown Regulation and Its Accelerated de novo Synthesis. Front. Plant Sci. 8:878. doi: 10.3389/fpls.2017.00878 | pl_PL |
dc.identifier.uri | http://hdl.handle.net/11089/39114 | |
dc.description.abstract | The positive effect of melatonin on the function of the photosynthetic apparatus is
known, but little is known about the specific mechanisms of melatonin’s action in plants.
The influence of melatonin on chlorophyll metabolism of 24-day-old Pisum sativum
L. seedlings during paraquat (PQ)-induced oxidative stress was investigated in this study.
Seeds were hydro-primed with water (H), 50 and 200 µM melatonin/water solutions
(H-MEL50, H-MEL200), while non-primed seeds were used as controls (C). Increases
in chlorophyllase activity (key enzyme in chlorophyll degradation) and 5-aminolevulinic
acid contents (the first compound in the porphyrin synthesis pathway) were observed
in H-MEL50 and H-MEL200 leaf disks. This suggests that melatonin may accelerate
damaged chlorophyll breakdown and its de novo synthesis during the first hours of
PQ treatment. Elevated level of pheophytin in control leaf disks following 24 h of PQ
incubation probably was associated with an enhanced rate of chlorophyll degradation
through formation of pheophytin as a chlorophyll derivative. This validates the hypothesis
that chlorophyllide, considered for many years, as a first intermediate of chlorophyll
breakdown is not. This is indicated by the almost unchanged chlorophyll to chlorophyllide
ratio after 24 h of PQ treatment. However, prolonged effects of PQ-induced stress
(48 h) revealed extensive discolouration of control and water-treated leaf disks, while
melatonin treatment alleviated PQ-induced photobleaching. Also the ratio of chlorophyll
to chlorophyllide and porphyrin contents were significantly higher in plants treated with
melatonin, which may indicate that this indoleamine both retards chlorophyll breakdown
and stimulates its de novo synthesis during extended stress. We concluded that
melatonin added into the seeds enhances the ability of pea seedlings to accelerate
chlorophyll breakdown and its de novo synthesis before stress appeared and for
several hours after, while during prolonged PQ incubation melatonin delays chlorophyll
degradation. | pl_PL |
dc.language.iso | pl | pl_PL |
dc.publisher | Frontiers | pl_PL |
dc.relation.ispartofseries | Frontiers in Plant Science;8 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | ALA | pl_PL |
dc.subject | chlorophyll | pl_PL |
dc.subject | chlorophyllase | pl_PL |
dc.subject | chlorophyllide | pl_PL |
dc.subject | hydropriming | pl_PL |
dc.subject | melatonin | pl_PL |
dc.subject | oxidative stress | pl_PL |
dc.subject | pheophytin | pl_PL |
dc.title | Melatonin Improves the Photosynthetic Apparatus in Pea Leaves Stressed by Paraquat via Chlorophyll Breakdown Regulation and Its Accelerated de novo Synthesis | pl_PL |
dc.type | Article | pl_PL |
dc.rights.holder | © 2017 Szafrańska, Reiter and Posmyk | pl_PL |
dc.page.number | 10 | pl_PL |
dc.contributor.authorAffiliation | Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland, | pl_PL |
dc.contributor.authorAffiliation | Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Cellular and Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, TX, United States | pl_PL |
dc.identifier.eissn | 1664-462X | |
dc.references | APHA, Awwa, WEF, I. (2005). Standard Methods for the Examination of Water and Wastewater, 21st Edn. Washington DC: American Public Health Association. | pl_PL |
dc.references | Arnao, M. B., and Hernandez–Ruiz, J. (2009). Protective effect of melatonin against chlorophyll degradation during senescence of barley leaves. J. Pineal Res. 46, 58–63. doi: 10.1111/j.1600-079X.2008.00625.x | pl_PL |
dc.references | Arnon, D. T. (1949). Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15. doi: 10.1104/pp.24.1.1 | pl_PL |
dc.references | Ashraf, M., and Harris, P. J. C. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica 51, 163–190. doi: 10.1007/s11099-013-0021-6 | pl_PL |
dc.references | Bradford, M. M. (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dry binding. Anal. Biochem. 72, 248–154. doi: 10.1016/0003-2697(76)90527-3 | pl_PL |
dc.references | Christ, B., and Hörtensteiner, S. (2014). Mechanism and significance of chlorophyll breakdown. J. Plant Growth Regul. 33, 4–20. doi: 10.1007/s00344-013-9392-y | pl_PL |
dc.references | Czarnecki, O., and Grimm, B. (2012). Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. J. Exp. Bot. 63, 1675–1687. doi: 10.1093/jxb/err437 | pl_PL |
dc.references | Dissanayake, P. K., Yamauchi, N., and Shigyo, M. (2012). Presence of pheophytin and its formation as a chlorophyll derivative in selected crop species. J. Agric. Sci. 7, 127–134. doi: 10.4038/jas.v7i3.4876 | pl_PL |
dc.references | Fang, Z., Bouwkamp, J. C., and Solomos, T. (1998). Chlorophyllase activities and chlorophyll degradation during leaf senescence in nonyellowing mutant and wild type of Phaseolus vulgaris L. J. Exp. Bot. 49, 503–510. | pl_PL |
dc.references | Galano, A., Tan, D. X., and Reiter, R. J. (2013). On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK. J. Pineal Res. 54, 245–257. doi: 10.1111/jpi.12010 | pl_PL |
dc.references | Gupta, S., Gupta, S. M., Sane, A. P., and Kumar, N. (2012). Chlorophyllase in Piper betle L. has a role in chlorophyll homeostasis and senescence dependent chlorophyll breakdown. Mol. Biol. Rep. 39, 7133–7142. doi: 10.1007/s11033-012-1545-8 | pl_PL |
dc.references | Guyer, L., Schelbert Hofstetter, S., Christ, B., Lira, B. S., Rossi, M., and Hörtensteiner, S. (2014). Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato. Plant Physiol. 166, 44–56. doi: 10.1104/pp.114.239541 | pl_PL |
dc.references | Harpaz-Saad, S., Azoulay, T., Arazi, T., Ben-Yaakov, E., Mett, A., Shiboleth, Y. M., et al. (2007). Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is post-translationally regulated. Plant Cell 19, 1007–1022. doi: 10.1105/tpc.107.050633 | pl_PL |
dc.references | Hawkes, T. R. (2014). Mechanisms of resistance to paraquat in plants. Pest Manag. Sci. 70, 1316–1323. doi: 10.1002/ps.3699 | pl_PL |
dc.references | Hörtensteiner, S. (2006). Chlorophyll degradation during senescence. Annu. Rev. Plant Biol. 57, 55–77. doi: 10.1146/annurev.arplant.57.032905.105212 | pl_PL |
dc.references | Hu, X., Tanaka, A., and Tanaka, R. (2013). Simple extraction methods that prevent the artifactual conversion of chlorophyll to chlorophyllide during pigment isolation from leaf samples. Plant Methods 9:19. doi: 10.1186/1746-4811-9-19 | pl_PL |
dc.references | Jibran, R., Hunter, D. A., and Dijkwel, P. P. (2013). Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol. Biol. 82, 547–561. doi: 10.1007/s11103-013-0043-2 | pl_PL |
dc.references | Jisha, K. C., Vijayakumari, K., and Puthur, J. T. (2013). Seed priming for abiotic stress tolerance: an overview. Acta Physiol. Plant. 35, 1381–1396. doi: 10.1007/s11738-012-1186-5 | pl_PL |
dc.references | Kalka, K., Fritsch, C., Bolsen, K., Verwohlt, B., and Goerz, G. (1997). Influence of indoles (melatonin, serotonin, and tryptophan) on the porphyrin metabolism in vitro. Skin Pharmacology 10, 221–224. | pl_PL |
dc.references | Kariola, T., Brader, G., Li, J., and Palva, E. T. (2005). Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell 17, 282–294. doi: 10.1105/tpc.104.025817 | pl_PL |
dc.references | Khan, M., Rozhon, W., and Poppenberger, B. (2014). The role of hormones in the aging of plants—a mini-review. Gerontology 60, 49–55. doi: 10.1159/000354334 | pl_PL |
dc.references | Kołodziejczyk, I., Dzitko, K., Szewczyk, R., and Posmyk, M. M. (2016a). Exogenous melatonin improves corn (Zea mays L.) embryo proteome in seeds subjected to chilling stress. J. Plant Physiol. 193:77–56. doi: 10.1016/j.jplph.2016.01.012 | pl_PL |
dc.references | Kołodziejczyk, I., Dzitko, K., Szewczyk, R., and Posmyk, M. M. (2016b). Exogenous melatonin expediently modifies proteome of maize (Zea mays L.) embryo during seed germination. Acta Physiol. Plant. 38:146 doi: 10.1007/s11738-016-2166-y | pl_PL |
dc.references | Lascano, R., Munaoz, N., Robert, G., Rodriguez, M., Melchiorre, M., Trippi, V., et al. (2012). Paraquat: An Oxidative Stress Inducer, Herbicides-Properties, Synthesis and Control of Weeds, ed Dr. Mohammed Nagib Hasaneen. InTech. Available online at: http://www.intechopen.com/books/herbicides-properties-synthesis-and-control-of-weeds/paraquat-an-oxidative-stress-inducer | pl_PL |
dc.references | Liang, C., Zheng, G., Li, W., Wang, Y., Wu, H., Qian, Y., et al. (2015). Melatonin delays leaf senescence and enhances salt stress tolerance in rice. J. Pineal Res. 59, 91–101. doi: 10.1111/jpi.12243 | pl_PL |
dc.references | Lichtenthaler, H. K., and Buschmann, C. (2001). “Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy,” in Current Protocols in Food Analytical Chemistry, eds R. E. Wrolstad, T. E. Acree, H. An, E. A. Decker, M. H. Penner, D. S. Reid, S. J. Schwartz, C. F. Shoemaker, and P. Sporns (New York, NY: John Wiley & Sons, Inc.), F4.3.1–F4.3.8. | pl_PL |
dc.references | Manchester, L. C., Coto-Montes, A., Boga, J. A., Andersen, L. P. H., Zhou, Z., Galano, A., et al. (2015). Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res. 59, 403–419. doi: 10.1111/jpi.12267 | pl_PL |
dc.references | Minguez-Mosquera, M. I., and Gallardo-Guerrero, L. G. (1996). Role of chlorophyllase in chlorophyll metabolism in olives cv. Gordal. Phytochemistry 41, 691–697. doi: 10.1016/0031-9422(95)00708-3 | pl_PL |
dc.references | Posmyk, M. M., Kuran, H., Marciniak, K., and Janas, K. M. (2008). Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. J. Pineal Res. 45, 24–31. doi: 10.1111/j.1600-079X.2007.00552.x | pl_PL |
dc.references | Radojevič, M., and Bashkin, V. N. (2006). Practical Environmental Analysis. Chapter 4, 2nd Edn. Cambridge, UK: RSC Publishing. | pl_PL |
dc.references | Reiter, R. J., Mayo, J. C., Tan, D. X., Sainz, R. M., Alatorre-Jimenez, M., and Qin, L. (2016). Melatonin as an antioxidant: under promises but over delivers. J. Pineal Res. 61, 253–278. doi: 10.1111/jpi.12360 | pl_PL |
dc.references | Reiter, R. J., Tan, D. X., Zhou, Z., Cruz, M. H., Fuentes-Broto, L., and Galano, A. (2015). Phytomelatonin: assisting plants to survive and thrive. Molecules 20, 7396–7437. doi: 10.3390/molecules20047396 | pl_PL |
dc.references | Rodriguez, C., Kotler, M., Menendez-Pelaez, A., Antolín, I., Uría, H., and Reiter, R. J. (1994). Circadian rhythm in 5-aminolevulinate synthase mRNA levels in the Harderian gland of the Syrian hamster: involvement of light-dark cycle and pineal function. Endocrine 2, 863–868. | pl_PL |
dc.references | Santos, C. V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hortic. 103, 93–99. doi: 10.1016/j.scienta.2004.04.009 | pl_PL |
dc.references | Sarropoulou, V., Dimassi-Theriou, K., Therios, I., and Koukourikou-Petridou, M. (2012). Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium × Prunus cerasus). Plant Physiol. Biochem. 61, 162–168. doi: 10.1016/j.plaphy.2012.10.001 | pl_PL |
dc.references | Schelbert, S., Aubry, S., Burla, B., Agne, B., Kessler, F., Krupińska, K., et al. (2009). Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 21, 767–785. doi: 10.1105/tpc.108.064089 | pl_PL |
dc.references | Schenk, N., Schelbert, S., Kanwischer, M., Goldschmidt, E. E., Dörmann, P., and Hörtensteiner, S. (2007). The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. FEBS Lett. 581, 5517–5525. doi: 10.1016/j.febslet.2007.10.060 | pl_PL |
dc.references | Sumanta, N., Haque, C. I., Nishika, J., and Suprakash, R. (2014). Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. 4, 63–69. doi: 10.1055/s-0033-1340072 | pl_PL |
dc.references | Szafrańska, K., Szewczyk, R., and Janas, K. M. (2014). Involvement of melatonin applied to Vigna radiata L. seeds in plant response to chilling stress. Cent. Eur. J. Biol. 9, 1117–1126. doi: 10.2478/s11535-014-0330-1 | pl_PL |
dc.references | Szafrańska, K., Reiter, R., and Posmyk, M. M. (2016). Melatonin application to Pisum sativum L. seeds positively influences the function of the photosynthetic apparatus in growing seedlings during paraquat-induced oxidative stress. Front. Plant Sci. 7:1663. doi: 10.3389/fpls.2016.01663 | pl_PL |
dc.references | Takamiya, K. I., Tsuchiya, T., and Ohta, H. (2000). Degradation pathway(s) of chlorophyll: what has gene cloning revealed? Trends Plant Sci. 5, 426–431. doi: 10.1016/S1360-1385(00)01735-0 | pl_PL |
dc.references | Tan, D. X., Manchester, L. C., Esteban-Zubero, E., Zhou, Z., and Reiter, R. J. (2015). Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20, 18886–18906. doi: 10.3390/molecules201018886 | pl_PL |
dc.references | Tanaka, A., and Tanaka, R. (2006). Chlorophyll metabolism. Curr. Opin. Plant Biol. 9, 248–255. doi: 10.1016/j.pbi.2006.03.011 | pl_PL |
dc.references | Turan, S., and Tripathy, B. C. (2015). Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings. Physiol. Plant. 153, 477–491. doi: 10.1111/ppl.12250 | pl_PL |
dc.references | Wang, P., Sun, X., Li, C. H., Wei, Z., Liang, D., and Ma, F. (2013a). Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J. Pineal Res. 54, 292–302. doi: 10.1111/jpi.12017 | pl_PL |
dc.references | Wang, P., Sun, X., Chang, C., Feng, F., Liang, D., Cheng, L., et al. (2013b). Delay in leaf senescence of Malus hupehensis by long-term melatonin application is associated with its regulation of metabolic status and protein degradation. J. Pineal Res. 55, 424–434. doi: 10.1111/jpi.12091 | pl_PL |
dc.references | Wang, P., Yin, L., Liang, D., Chao, L. I., Ma, F., and Yue, Z. (2012). Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate–glutathione cycle. J. Pineal Res. 53, 11–20. doi: 10.1111/j.1600-079X.2011.00966.x | pl_PL |
dc.references | Weeda, S., Zhang, N., Zhao, X., Ndip, G., Guo, Y., Buck, G. A., et al. (2014). Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS ONE 9:e93462. doi: 10.1371/journal.pone.0093462 | pl_PL |
dc.contributor.authorEmail | malgorzata.posmyk@biol.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.3389/fpls.2017.00878 | |
dc.relation.volume | 878 | pl_PL |
dc.discipline | nauki biologiczne | pl_PL |