dc.contributor.author | Śmietański, Marek | |
dc.date.accessioned | 2021-09-14T11:02:25Z | |
dc.date.available | 2021-09-14T11:02:25Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Śmietański, Marek J. 2020. "On a Nonsmooth Gauss–Newton Algorithms for Solving Nonlinear Complementarity Problems" Algorithms 13, no. 8: 190. https://doi.org/10.3390/a13080190 | pl_PL |
dc.identifier.issn | 1999-4893 | |
dc.identifier.uri | http://hdl.handle.net/11089/39058 | |
dc.description.abstract | In this paper, we propose a new version of the generalized damped Gauss–Newton method for solving nonlinear complementarity problems based on the transformation to the nonsmooth equation, which is equivalent to some unconstrained optimization problem. The B-differential plays the role of the derivative. We present two types of algorithms (usual and inexact), which have superlinear and global convergence for semismooth cases. These results can be applied to efficiently find all solutions of the nonlinear complementarity problems under some mild assumptions. The results of the numerical tests are attached as a complement of the theoretical considerations. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | MDPI | pl_PL |
dc.relation.ispartofseries | Algorithms;13(8) | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Gauss–Newton method | pl_PL |
dc.subject | nonsmooth equations | pl_PL |
dc.subject | nonsmooth optimization | pl_PL |
dc.subject | nonlinear complementarity problem | pl_PL |
dc.subject | B-differential | pl_PL |
dc.subject | superlinear convergence | pl_PL |
dc.subject | global convergence | pl_PL |
dc.title | On a Nonsmooth Gauss–Newton Algorithms for Solving Nonlinear Complementarity Problems | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 11 | pl_PL |
dc.contributor.authorAffiliation | Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Łódź, Poland | pl_PL |
dc.references | Mangasarian, O.L. Equivalence of the complementarity problem to a system of nonlinear equations. SIAM J. Appl. Math. 1976, 31, 89–92 | pl_PL |
dc.references | Harker, P.T.; Pang, J.S. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications. Math. Program. 1990, 48, 161–220. | pl_PL |
dc.references | Ferris, M.C.; Pang, J.S. Engineering and economic applications of complementarity problems. SIAM Rev. 1997, 39, 669–713. | pl_PL |
dc.references | Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, 1970. | pl_PL |
dc.references | Chen, J.; Li, W. Local convergence of Gauss–Newton’s like method in weak conditions. J. Math. Anal. Appl. 2006, 324, 381–394. | pl_PL |
dc.references | Fan, J.; Pan, J. On the convergence rate of the inexact Levenberg-Marquardt method. J. Ind. Manag. Optim. 2011, 7, 199–210. | pl_PL |
dc.references | Yamashita, N.; Fukushima, M. On the Rate of Convergence of the Levenberg-Marquardt Method. J. Comput. Suppl. 2001, 15, 227–238. | pl_PL |
dc.references | De Luca, T.; Facchinei, F.; Kanzow, C.T. A theoretical and numerical comparison of some semismooth algorithms for complementarity problems. Comp. Optim. Appl. 2000, 16, 173–205. | pl_PL |
dc.references | Xiu, N.; Zhang, J. A smoothing Gauss–Newton method for the generalized HLCP. J. Comput. Appl. Math. 2001, 129, 195–208. | pl_PL |
dc.references | Subramanian, P.K.; Xiu, N.H. Convergence analysis of Gauss–Newton method for the complemetarity problem. J. Optim. Theory Appl. 1997, 94, 727–738. | pl_PL |
dc.references | Martínez, J.M.; Qi, L. Inexact Newton method for solving nonsmooth equations. J. Comput. Appl. Math. 1995, 60, 127–145. | pl_PL |
dc.references | Bao, J.F.; Li, C.; Shen, W.P.; Yao, J.C.; Guu, S.M. Approximate Gauss–Newton methods for solving underdetermined nonlinear least squares problems. App. Num. Math. 2017, 111, 92–110. | pl_PL |
dc.references | Cartis, C.; Roberts, L. A derivative-free Gauss–Newton method. Math. Program. Comput. 2019, 11, 631–674. | pl_PL |
dc.references | Clarke, F.H. Optimization and Nonsmooth Analysis; John Wiley & Sons: New York, NY, USA, 1983. | pl_PL |
dc.references | Qi, L. Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 1993, 18, 227–244. | pl_PL |
dc.references | Mifflin, R. Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 1977, 15, 142–149. | pl_PL |
dc.references | Qi, L.; Sun, D. A nonsmooth version of Newton’s method. Math. Program. 1993, 58, 353–367. | pl_PL |
dc.references | Pang, J.S.; Qi, L. Nonsmooth equations: Motivation and algorithms. SIAM J. Optim. 1993, 3, 443–465. | pl_PL |
dc.references | Ulbrich, M. Nonmonotone trust-region methods for bound-constrained semismooth systems of equations with applications to nonlinear mixed complementarity problems. SIAM J. Optim. 2001, 11, 889–917. | pl_PL |
dc.references | Kojima, M.; Shindo, S. Extensions of Newton and quasi-Newton methods to systems of PC1-equations. J. Oper. Res. Soc. Jpn. 1986, 29, 352–374. | pl_PL |
dc.references | Jiang, H.; Qi, L. A new nonsmooth equations approach to nonlinear complementarity problems. SIAM J. Control Optim. 1997, 35, 178–193. | pl_PL |
dc.references | Feng, Y.; Wang, G.; Li, W.; Li, N. Multi-strategy monarch butterfly optimization algorithm for discounted 0–1 knapsack problem. Neural Comput. Appl. 2018, 30, 3019–3036. | pl_PL |
dc.references | Feng, Y.; Yu, X.; Wang, G. A novel monarch butterfly optimization with global position updating operator for large-scale 0–1 knapsack problems. Mathematics 2019, 7, 1056. | pl_PL |
dc.references | Wang, G.; Deb, S.; Coelho, L.D. Earthworm optimisation algorithm: A bio-inspired metaheuristic algorithm for global optimisation problems. Int. J. Biol. Inspired Comput. 2018, 12, 1–22. | pl_PL |
dc.references | Wang, G.; Deb, S.; Coelho, L.D. Elephant herding optimization. In Proceedings of the 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI), Bali, Indonesia, 7–9 December 2015; pp. 1–5. | pl_PL |
dc.references | Wang, G.; Deb, S.; Gao, X.; Coelho, L.D. A new metaheuristic optimisation algorithm motivated by elephant herding behaviour. Int. J. Biol. Inspired Comput. 2016, 8, 394–409. | pl_PL |
dc.references | Feng, Y.; Wang, G. Binary moth search algorithm for discounted 0-1 knapsack problem. IEEE Access 2018, 6, 10708–10719. | pl_PL |
dc.references | Wang, G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Memet. Comput. 2018, 10, 151–164. | pl_PL |
dc.identifier.doi | 10.3390/a13080190 | |
dc.discipline | matematyka | pl_PL |