dc.contributor.author | Czepas, Jan | |
dc.contributor.author | Grobelski, Bartłomiej | |
dc.contributor.author | Gwozdzinski, Krzysztof | |
dc.contributor.author | Matczak, Karolina | |
dc.contributor.author | Koceva-Chyla, Aneta | |
dc.contributor.author | Jóźwiak, Zofia | |
dc.date.accessioned | 2021-09-14T09:51:27Z | |
dc.date.available | 2021-09-14T09:51:27Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Czepas, J.; Matczak, K.; Koceva-Chyła, A.; Grobelski, B.; Jóźwiak, Z.; Gwoździński, K. Doxyl Nitroxide Spin Probes Can Modify Toxicity of Doxorubicin towards Fibroblast Cells. Molecules 2020, 25, 5138. https://doi.org/10.3390/molecules25215138 | pl_PL |
dc.identifier.issn | 1420-3049 | |
dc.identifier.uri | http://hdl.handle.net/11089/39054 | |
dc.description.abstract | The biological properties of doxyl stearate nitroxides (DSs): 5-DS, Met-12-DS, and 16-DS, commonly used as spin probes, have not been explored in much detail so far. Furthermore, the influence of DSs on the cellular changes induced by the anticancer drug doxorubicin (DOX) has not yet been investigated. Therefore, we examined the cytotoxicity of DSs and their ability to induce cell death and to influence on fluidity and lipid peroxidation (LPO) in the plasma membrane of immortalised B14 fibroblasts, used as a model neoplastic cells, susceptible to DOX-induced changes. The influence of DSs on DOX toxicity was also investigated and compared with that of a natural reference antioxidant α-Tocopherol. By employing the trypan blue exclusion test and double fluorescent staining, we found a significant level of cytotoxicity for DSs and showed that their ability to induce apoptosis and modify plasma membrane fluidity (measured fluorimetrically) is more potent than for α-Tocopherol. The most cytotoxic nitroxide was 5-DS. The electron paramagnetic resonance (EPR) measurements revealed that 5-DS was reduced in B14 cells at the fastest and Met-12-DS at the slowest rate. In the presence of DOX, DSs were reduced slower than alone. The investigated compounds, administered with DOX, enhanced DOX-induced cell death and demonstrated concentration-dependent biphasic influence on membrane fluidity. A-Tocopherol showed weaker effects than DSs, regardless the mode of its application—alone or with DOX. High concentrations of α-Tocopherol and DSs decreased DOX-induced LPO. Substantial cytotoxicity of the DSs suggests that they should be used more carefully in the investigations performed on sensitive cells. Enhancement of DOX toxicity by DSs showed their potential to act as chemosensitizers of cancer cells to anthracycline chemotherapy. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | MDPI | pl_PL |
dc.relation.ispartofseries | Molecules;25(21), 5138 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | doxyl nitroxide | pl_PL |
dc.subject | α-Tocopherol | pl_PL |
dc.subject | doxorubicin | pl_PL |
dc.subject | cytotoxicity | pl_PL |
dc.subject | anticancer activity | pl_PL |
dc.subject | lipid peroxidation | pl_PL |
dc.subject | membrane fluidity | pl_PL |
dc.subject | apoptosis | pl_PL |
dc.subject | electron paramagnetic resonance | pl_PL |
dc.subject | nitroxide reduction | pl_PL |
dc.subject | chemosensitizer | pl_PL |
dc.title | Doxyl Nitroxide Spin Probes Can Modify Toxicity of Doxorubicin towards Fibroblast Cells | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 30 | pl_PL |
dc.contributor.authorAffiliation | Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska st., 90-236 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska st., 90-236 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska st., 90-236 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska st., 90-236 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska st., 90-236 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska st., 90-236 Łódź, Poland | pl_PL |
dc.references | Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 2013, 65, 157–170. | pl_PL |
dc.references | Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 2004, 56, 185–229. | pl_PL |
dc.references | Speelmans, G.; Staffhorst, R.W.H.M.; de Kruijff, B.; de Wolf, F.A. Transport studies of doxorubicin in model membranes indicate a difference in passive diffusion across and binding at the outer and inner leaflets of the plasma membrane. Biochemistry 1994, 33, 13761–13768. | pl_PL |
dc.references | J ˛edrzejczak, M.; Koceva-Chyła, A.; Gwo´zdzi ´nski, K.; Jó´zwiak, Z. Changes in plasma membrane fluidity of immortal rodent cells induced by anticancer drugs doxorubicin, aclarubicin and mitoxantrone. Cell Biol. Int. 1999, 23, 497–506. | pl_PL |
dc.references | Matczak, K.; Koceva-Chyła, A.; Gwo´zdzi ´nski, K.; Jó´zwiak, Z. Doxorubicin and paclitaxel cause different changes in plasma membrane fluidity of MCF-7 breast cancer cells. Postepy Biol. Kom. 2009, 36 (Suppl. 25), 135–152. | pl_PL |
dc.references | Agmon, E.; Stockwell, B.R. Lipid homeostasis and regulated cell death. Curr. Opin. Chem. Biol. 2017, 39, 83–89. | pl_PL |
dc.references | Mankhetkorn, S.; Dubru, F.; Hesschenbrouck, J.; Fiallo, M.; Garnier-Suillerot, A. Relation among the resistance factor, kinetics of uptake, and kinetics of the P-glycoprotein-mediated efflux of doxorubicin, daunorubicin, 8-(S)-fluoroidarubicin, and idarubicin in multidrug-resistant K562 cells. Mol. Pharmacol. 1996, 49, 532–539. | pl_PL |
dc.references | Wang, S.; Konorev, E.A.; Kotamraju, S.; Joseph, J.; Kalivendi, S.; Kalyanaraman, B. Doxorubicin Induces Apoptosis in Normal and Tumor Cells via Distinctly Different Mechanisms. J. Biol. Chem. 2004, 279, 25535–25543. | pl_PL |
dc.references | Mizutani, H.; Tada-Oikawaa, S.; Hirakua, Y.; Kojima, M.; Kawanishi, S. Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci. 2005, 76, 1439–1453. | pl_PL |
dc.references | Halliwell, B.; Gutteridge, J.M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 1984, 219, 1–14. | pl_PL |
dc.references | Kovacic, P.; Osuna, J.A., Jr. Mechanisms of anti-cancer agents: Emphasis on oxidative stress and electron transfer. Curr. Pharm. Des. 2000, 6, 277–309. | pl_PL |
dc.references | Catalá, A. Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model”. Biochimie 2012, 94, 101–109. | pl_PL |
dc.references | Hrelia, S.; Fiorentini, D.; Maraldi, T.; Angeloni, C.; Bordoni, A.; Biagi, P.L.; Hakim, G. Doxorubicin induces early lipid peroxidation associated with changes in glucose transport in cultured cardiomyocytes. Biochim. Biophys. Acta 2002, 1567, 150–156. | pl_PL |
dc.references | Guven, C.; Taskin, E. Adriamycin’s Hepatotoxic Effect Associated with Local Renin Angiotensin System. Jacobs J. Drug Metab. Toxicol. 2015, 1, 1–4. | pl_PL |
dc.references | Wouters, K.A.; Kremer, L.C.; Miller, T.L.; Herman, E.H.; Lipshultz, S.E. Protecting against anthracycline-induced myocardial damage: A review of the most promising strategies. Br. J. Haematol. 2005, 131, 561–578. | pl_PL |
dc.references | Xia, C.Q.; Smith, P.G. Drug efflux transporters and multidrug resistance in acute leukemia: Therapeutic impact and novel approaches to mediation. Mol. Pharmacol. 2012, 82, 1008–1021. | pl_PL |
dc.references | Nobili, S.; Landini, I.; Mazzei, T.; Mini, E. Overcoming tumor multidrug resistance using drugs able to evade P-glycoprotein or to exploit its expression. Med. Res. Rev. 2012, 32, 1220–1262. | pl_PL |
dc.references | Zalba, S.; ten Hagen, T.L.M. Cell membrane modulation as adjuvant in cancer therapy. Cancer Treat. Rev. 2017, 52, 48–57. | pl_PL |
dc.references | Monti, E.; Cova, D.; Guido, E.; Morelli, R.; Oliva, C. Protective effect of the nitroxide tempol against the cardiotoxicity of adriamycin. Free Radic. Biol. Med. 1996, 21, 463–470. | pl_PL |
dc.references | Zhang, R.; Pinson, A.; Samuni, A. Both hydroxylamine and nitroxide protect cardiomyocytes from oxidative stress. Free Radic. Biol. Med. 1998, 24, 66–75. | pl_PL |
dc.references | Tabaczar, S.; Czepas, J.; Koceva-Chyla, A.; Kilanczyk, E.; Piasecka-Zelga, J.; Gwozdzinski, K. The effect of the nitroxide pirolin on oxidative stress induced by doxorubicin and taxanes in the rat brain. J. Physiol. Pharmacol. 2017, 68, 295–308. | pl_PL |
dc.references | Koceva-Chyła, A.; Gwo´zdzi ´nski, K.; Kochman, A.; Stolarska, A.; Jó´zwiak, Z. Effects of pyrroline and pyrrolidine nitroxides on lipid peroxidation in heart tissue of rats treated with doxorubicin. Cell. Mol. Biol. Lett. 2003, 8, 179–183. | pl_PL |
dc.references | Gariboldi, M.B.; Terni, F.; Ravizza, R.; Meschini, S.; Marra, M.; Condello, M.; Arancia, G.; Monti, E. The nitroxide Tempol modulates anthracycline resistance in breast cancer cells. Free Radic. Biol. Med. 2006, 40, 1409–1418. | pl_PL |
dc.references | Schreier, S.; Polnaszek, C.F.; Smith, I.C. Spin labels in membranes. Problems in practice. Biochim. Biophys. Acta 1978, 515, 395–436. | pl_PL |
dc.references | Nusair, N.A.; Lorigan, G.A. Investigating the structural and dynamic properties of n-doxylstearic acid in magnetically-aligned phospholipid bilayers by X-band EPR spectroscopy. Chem. Phys. Lipids 2005, 133, 151–164. | pl_PL |
dc.references | Kamal-Eldin, A.; Appelqvist, L.-A. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 1996, 31, 671–701. | pl_PL |
dc.references | Wang, X.; Quinn, P.J. The location and function of vitamin E in membranes (review). Mol. Membr. Biol. 2000, 17, 143–156. | pl_PL |
dc.references | Neophytou, C.M.; Constantinou, A.I. Drug Delivery Innovations for Enhancing the Anticancer Potential of Vitamin E Isoforms and Their Derivatives. BioMed Res. Int. 2015, 2015. | pl_PL |
dc.references | Czepas, J.; Koceva-Chyła, A.; Gwo´zdzi ´nski, K.; Jó´zwiak, Z. Different effectiveness of piperidine nitroxides against oxidative stress induced by doxorubicin and hydrogen peroxide. Cell. Biol. Toxicol. 2008, 24, 101–112. | pl_PL |
dc.references | Atkinson, J.; Harroun, T.; Wassall, S.R.; Stillwell, W.; Katsaras, J. The location and behavior of a-tocopherol in membranes. Mol. Nutr. Food Res. 2010, 54, 641–651. | pl_PL |
dc.references | Berthiaume, J.M.; Oliveira, P.J.; Fariss, M.W.; Wallace, K.B. Dietary Vitamin E Decreases Doxorubicin-Induced Oxidative Stress Without Preventing Mitochondrial Dysfunction. Cardiovasc. Toxicol. 2005, 5, 257–267. | pl_PL |
dc.references | Legha, S.S.; Wang, Y.M.; Mackay, B.; Ewer, M.; Hortobagyi, G.N.; Benjamin, R.S.; Ali, M.K. Clinical and pharmacologic investigation of the effects of alpha-tocopherol on adriamycin cardiotoxicity. Ann. N. Y. Acad. Sci. 1982, 393, 411–418. | pl_PL |
dc.references | van Dalen, E.C.; Caron, H.N.; Dickinson, H.O.; Kremer, L.C. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst. Rev. 2011, 15, CD003917. | pl_PL |
dc.references | Tiurin, V.A.; Kagan, V.E.; Serbinova, E.A.; Gorbunov, N.V.; Erin, A.N. The interaction of alpha-tocopherol with phospholipid liposomes: The absence of transbilayer mobility. Biull. Eksp. Biol. Med. 1986, 102, 689–692. | pl_PL |
dc.references | Urano, S.; Kitahara, M.; Kato, Y.; Hasegawa, Y.; Matsuo, M. Membrane stabilizing effect of vitamin E: Existence of a hydrogen bond between alpha-tocopherol and phospholipids in bilayer liposomes. J. Nutr. Sci. Vitaminol. 1990, 36, 513–519. | pl_PL |
dc.references | Weber, T.; Lu, M.; Andera, L.; Lahm, H.; Gellert, N.; Fariss, M.W.; Korinek, V.; Sattler, W.; Ucker, D.S.; Terman, A.; et al. Vitamin E succinate is a potent novel antineoplastic agent with high selectivity and cooperativity with tumor necrosis factor-related apoptosis inducing ligand (Apo2 ligand) in vivo. Clin. Cancer Res. 2002, 8, 863–869. | pl_PL |
dc.references | Ankel, E.G.; Lai, C.S.; Hopwood, L.E.; Zivkovic, Z. Cytotoxicity of commonly used nitroxide radical spin probes. Life Sci. 1987, 40, 495–498. | pl_PL |
dc.references | Jung, K.; Ristori, S.; Gallori, E.; Martini, G. Stability of water-soluble and lipid-soluble paramagnetic probes in Bacillus subtilis. Biochim. Biophys. Acta 1998, 1425, 387–397. | pl_PL |
dc.references | Chen, K.-Y.; McLaughlin, M.G. Differences in the reduction kinetics of incorporated spin labels in undifferentiated and differentiated mouse neuroblastoma cells. Biochim. Biophys. Acta 1985, 845, 189–195. | pl_PL |
dc.references | Swamy, M.J.; Ciani, L.; Ge, M.; Smith, A.K.; Holowka, D.; Baird, B.; Freed, J.H. Coexisting Domains in the Plasma Membranes of Live Cells Characterized by Spin-Label ESR Spectroscopy. Biophys. J. 2006, 90, 4452–4465. | pl_PL |
dc.references | Bentinger, M.; Brismar, K.; Dallner, G. The antioxidant role of coenzyme Q. Mitochondrion 2007, 7, S41–S50. | pl_PL |
dc.references | Lenaz, G.; Samori, B.; Fato, R.; Battino, M.; Castelli, G.P.; Domini, I. Localization and preferred orientations of ubiquinone homologs in model bilayers. Biochem. Cell Biol. 1992, 70, 504–514. | pl_PL |
dc.references | Escribá, P.V.; Busquets, X.; Inokuchi, J.; Balogh, G.; Török, Z.; Horváth, I.; Harwood, J.L.; Vígh, L. Membrane lipid therapy: Modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment. Prog. Lipid Res. 2015, 59, 38–53. | pl_PL |
dc.references | . Yeager, M.D.; Feigenson, G.W. Fluorescence quenching in model membranes: Phospholipid acyl chain distributions around small fluorophores. Biochemistry 1990, 29, 4380–4392. | pl_PL |
dc.references | London, E.; Feigenson, G.W. Fluorescence quenching in model membranes. 1. Characterization of quenching caused by a spin-labeled phospholipid. Biochemistry 1981, 20, 1932–1938. | pl_PL |
dc.references | Trnka, J.; Blaikie, F.H.; Smith, R.A.J.; Murphy, M.P. A mitochondria-targeted nitroxide is reduced to its hydroxylamine by ubiquinol in mitochondria. Free Radic. Biol. Med. 2008, 44, 1406–1419. | pl_PL |
dc.references | Ausili, A.; Torrecillas, A.; Aranda, F.; de Godos, A.; Sánchez-Bautista, S.; Corbalán-García, S.; Gómez-Fernández, J.C. Redox State of Coenzyme Q10 Determines Its Membrane Localization. J. Phys. Chem. B 2008, 112, 12696–12702. | pl_PL |
dc.references | Vogel, A.; Scheidt, H.A.; Huster, D. The Distribution of Lipid Attached Spin Probes in Bilayers: Application to Membrane Protein Topology. Biophys. J. 2003, 85, 1691–1701. | pl_PL |
dc.references | Jin, S.; Zhou, F.; Katirai, F.; Li, P.-L. Lipid Raft Redox Signaling: Molecular Mechanisms in Health and Disease. Antioxid. Redox Signal. 2011, 15, 1043–1083. | pl_PL |
dc.references | Regev, R.; Yeheskely-Hayon, D.; Katzir, H.; Eytan, G.D. Transport of anthracyclines and mitoxantrone across membranes by a flip-flop mechanism. Biochem. Pharmacol. 2005, 70, 161–169. | pl_PL |
dc.references | Constantinides, P.P.; Wang, Y.Y.; Burke, T.G.; Tritton, T.R. Transverse location of anthracyclines in lipid bilayers. Paramagnetic quenching studies. Biophys. Chem. 1990, 35, 259–264. | pl_PL |
dc.references | Koceva-Chyła, A.; J ˛edrzejczak, M.; Skierski, J.; Kania, K.; Jó´zwiak, Z. Mechanisms of induction of apoptosis by anthraquinone anticancer drugs aclarubicin and mitoxantrone in comparison with doxorubicin: Relation to drug cytotoxicity and caspase-3 activation. Apoptosis 2005, 10, 1497–1514. | pl_PL |
dc.references | Zeng, L.; Wu, G.-Z.; Goh, K.J.; Lee, Y.M.; Ng, C.C.; You, A.B.; Wang, J.; Jia, D.; Hao, A.; Yu, Q.; et al. Saturated Fatty Acids Modulate Cell Response to DNA Damage: Implication for Their Role in Tumorigenesis. PLoS ONE 2008, 3, e2329. | pl_PL |
dc.references | Kajiyama, K.; Sugiyama, M.; Iwahashi, H.; Hidaka, T.; Entman, M.L.; Shimada, I.; Ogura, R. Electron Spin Resonance Studies on the Spin Label of Rat Cardiac Mitochondria Treated with Adriamycin. Kurume Med. J. 1987, 34, 59–64. | pl_PL |
dc.references | Nilsson, U.A.; Olsson, L.I.; Carlin, G.; Bylund-Fellenius, A.C. Inhibition of lipid peroxidation by spin labels. Relationships between structure and function. J. Biol. Chem. 1989, 264, 11131–11135. | pl_PL |
dc.references | May, J.M.; Qu, Z.-C.; Mendiratta, S. Protection and Recycling of a-Tocopherol in Human Erythrocytes by Intracellular Ascorbic Acid. Arch. Biochem. Biophys. 1998, 349, 281–289. | pl_PL |
dc.references | Yuann, J.M.; Morse, R.D. Determination by photoreduction of flip-flop kinetics of spin-labeled stearic acids across phospholipid bilayers. Biochim. Biophys. Acta 1999, 1416, 135–144. | pl_PL |
dc.references | Kagan, V.E.; Fabisiak, J.P.; Shvedova, A.A.; Tyurina, Y.Y.; Tyurin, V.A.; Schor, N.F.; Kawai, K. Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Lett. 2000, 477, 1–7. | pl_PL |
dc.references | Waggoner, S.; Kingzett, T.J.; Rottschaefer, S.; Griffith, O.H.; Keith, A.D. A spin-labeled lipid for probing biological membranes. Chem. Phys. Lipids 1969, 3, 245–253. | pl_PL |
dc.references | Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 2001. | pl_PL |
dc.references | Gasiorowski, K.; Brokos, B.; Kulma, A.; Ogorzałek, A.; Skórkowska, K. A comparison of the methods applied to detect apoptosis in genotoxically-damaged lymphocytes cultured in the presence of four antimutagens. Cell. Mol. Biol. Lett. 2001, 6, 141–159. | pl_PL |
dc.references | 2. Van der Meer, B.W. Fluorescence studies on biological membranes. In Subcellular Biochemistry; Hilderson, H.J., Harris, J.R., Eds.; Plenum Press: New York, NY, USA, 1988; Volume 13, pp. 1–53. | pl_PL |
dc.references | Halliwell, B.; Gutteridge, J.M. Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: The role of superoxide and hydroxyl radicals. FEBS Lett. 1981, 128, 347–352. | pl_PL |
dc.identifier.doi | https://doi.org/10.3390/molecules25215138 | |
dc.discipline | nauki biologiczne | pl_PL |