Show simple item record

dc.contributor.authorCzepas, Jan
dc.contributor.authorGrobelski, Bartłomiej
dc.contributor.authorGwozdzinski, Krzysztof
dc.contributor.authorMatczak, Karolina
dc.contributor.authorKoceva-Chyla, Aneta
dc.contributor.authorJóźwiak, Zofia
dc.date.accessioned2021-09-14T09:51:27Z
dc.date.available2021-09-14T09:51:27Z
dc.date.issued2020
dc.identifier.citationCzepas, J.; Matczak, K.; Koceva-Chyła, A.; Grobelski, B.; Jóźwiak, Z.; Gwoździński, K. Doxyl Nitroxide Spin Probes Can Modify Toxicity of Doxorubicin towards Fibroblast Cells. Molecules 2020, 25, 5138. https://doi.org/10.3390/molecules25215138pl_PL
dc.identifier.issn1420-3049
dc.identifier.urihttp://hdl.handle.net/11089/39054
dc.description.abstractThe biological properties of doxyl stearate nitroxides (DSs): 5-DS, Met-12-DS, and 16-DS, commonly used as spin probes, have not been explored in much detail so far. Furthermore, the influence of DSs on the cellular changes induced by the anticancer drug doxorubicin (DOX) has not yet been investigated. Therefore, we examined the cytotoxicity of DSs and their ability to induce cell death and to influence on fluidity and lipid peroxidation (LPO) in the plasma membrane of immortalised B14 fibroblasts, used as a model neoplastic cells, susceptible to DOX-induced changes. The influence of DSs on DOX toxicity was also investigated and compared with that of a natural reference antioxidant α-Tocopherol. By employing the trypan blue exclusion test and double fluorescent staining, we found a significant level of cytotoxicity for DSs and showed that their ability to induce apoptosis and modify plasma membrane fluidity (measured fluorimetrically) is more potent than for α-Tocopherol. The most cytotoxic nitroxide was 5-DS. The electron paramagnetic resonance (EPR) measurements revealed that 5-DS was reduced in B14 cells at the fastest and Met-12-DS at the slowest rate. In the presence of DOX, DSs were reduced slower than alone. The investigated compounds, administered with DOX, enhanced DOX-induced cell death and demonstrated concentration-dependent biphasic influence on membrane fluidity. A-Tocopherol showed weaker effects than DSs, regardless the mode of its application—alone or with DOX. High concentrations of α-Tocopherol and DSs decreased DOX-induced LPO. Substantial cytotoxicity of the DSs suggests that they should be used more carefully in the investigations performed on sensitive cells. Enhancement of DOX toxicity by DSs showed their potential to act as chemosensitizers of cancer cells to anthracycline chemotherapy.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.relation.ispartofseriesMolecules;25(21), 5138
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectdoxyl nitroxidepl_PL
dc.subjectα-Tocopherolpl_PL
dc.subjectdoxorubicinpl_PL
dc.subjectcytotoxicitypl_PL
dc.subjectanticancer activitypl_PL
dc.subjectlipid peroxidationpl_PL
dc.subjectmembrane fluiditypl_PL
dc.subjectapoptosispl_PL
dc.subjectelectron paramagnetic resonancepl_PL
dc.subjectnitroxide reductionpl_PL
dc.subjectchemosensitizerpl_PL
dc.titleDoxyl Nitroxide Spin Probes Can Modify Toxicity of Doxorubicin towards Fibroblast Cellspl_PL
dc.typeArticlepl_PL
dc.page.number30pl_PL
dc.contributor.authorAffiliationDepartment of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska st., 90-236 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska st., 90-236 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska st., 90-236 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska st., 90-236 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska st., 90-236 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska st., 90-236 Łódź, Polandpl_PL
dc.referencesTacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 2013, 65, 157–170.pl_PL
dc.referencesMinotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 2004, 56, 185–229.pl_PL
dc.referencesSpeelmans, G.; Staffhorst, R.W.H.M.; de Kruijff, B.; de Wolf, F.A. Transport studies of doxorubicin in model membranes indicate a difference in passive diffusion across and binding at the outer and inner leaflets of the plasma membrane. Biochemistry 1994, 33, 13761–13768.pl_PL
dc.referencesJ ˛edrzejczak, M.; Koceva-Chyła, A.; Gwo´zdzi ´nski, K.; Jó´zwiak, Z. Changes in plasma membrane fluidity of immortal rodent cells induced by anticancer drugs doxorubicin, aclarubicin and mitoxantrone. Cell Biol. Int. 1999, 23, 497–506.pl_PL
dc.referencesMatczak, K.; Koceva-Chyła, A.; Gwo´zdzi ´nski, K.; Jó´zwiak, Z. Doxorubicin and paclitaxel cause different changes in plasma membrane fluidity of MCF-7 breast cancer cells. Postepy Biol. Kom. 2009, 36 (Suppl. 25), 135–152.pl_PL
dc.referencesAgmon, E.; Stockwell, B.R. Lipid homeostasis and regulated cell death. Curr. Opin. Chem. Biol. 2017, 39, 83–89.pl_PL
dc.referencesMankhetkorn, S.; Dubru, F.; Hesschenbrouck, J.; Fiallo, M.; Garnier-Suillerot, A. Relation among the resistance factor, kinetics of uptake, and kinetics of the P-glycoprotein-mediated efflux of doxorubicin, daunorubicin, 8-(S)-fluoroidarubicin, and idarubicin in multidrug-resistant K562 cells. Mol. Pharmacol. 1996, 49, 532–539.pl_PL
dc.referencesWang, S.; Konorev, E.A.; Kotamraju, S.; Joseph, J.; Kalivendi, S.; Kalyanaraman, B. Doxorubicin Induces Apoptosis in Normal and Tumor Cells via Distinctly Different Mechanisms. J. Biol. Chem. 2004, 279, 25535–25543.pl_PL
dc.referencesMizutani, H.; Tada-Oikawaa, S.; Hirakua, Y.; Kojima, M.; Kawanishi, S. Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci. 2005, 76, 1439–1453.pl_PL
dc.referencesHalliwell, B.; Gutteridge, J.M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 1984, 219, 1–14.pl_PL
dc.referencesKovacic, P.; Osuna, J.A., Jr. Mechanisms of anti-cancer agents: Emphasis on oxidative stress and electron transfer. Curr. Pharm. Des. 2000, 6, 277–309.pl_PL
dc.referencesCatalá, A. Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model”. Biochimie 2012, 94, 101–109.pl_PL
dc.referencesHrelia, S.; Fiorentini, D.; Maraldi, T.; Angeloni, C.; Bordoni, A.; Biagi, P.L.; Hakim, G. Doxorubicin induces early lipid peroxidation associated with changes in glucose transport in cultured cardiomyocytes. Biochim. Biophys. Acta 2002, 1567, 150–156.pl_PL
dc.referencesGuven, C.; Taskin, E. Adriamycin’s Hepatotoxic Effect Associated with Local Renin Angiotensin System. Jacobs J. Drug Metab. Toxicol. 2015, 1, 1–4.pl_PL
dc.referencesWouters, K.A.; Kremer, L.C.; Miller, T.L.; Herman, E.H.; Lipshultz, S.E. Protecting against anthracycline-induced myocardial damage: A review of the most promising strategies. Br. J. Haematol. 2005, 131, 561–578.pl_PL
dc.referencesXia, C.Q.; Smith, P.G. Drug efflux transporters and multidrug resistance in acute leukemia: Therapeutic impact and novel approaches to mediation. Mol. Pharmacol. 2012, 82, 1008–1021.pl_PL
dc.referencesNobili, S.; Landini, I.; Mazzei, T.; Mini, E. Overcoming tumor multidrug resistance using drugs able to evade P-glycoprotein or to exploit its expression. Med. Res. Rev. 2012, 32, 1220–1262.pl_PL
dc.referencesZalba, S.; ten Hagen, T.L.M. Cell membrane modulation as adjuvant in cancer therapy. Cancer Treat. Rev. 2017, 52, 48–57.pl_PL
dc.referencesMonti, E.; Cova, D.; Guido, E.; Morelli, R.; Oliva, C. Protective effect of the nitroxide tempol against the cardiotoxicity of adriamycin. Free Radic. Biol. Med. 1996, 21, 463–470.pl_PL
dc.referencesZhang, R.; Pinson, A.; Samuni, A. Both hydroxylamine and nitroxide protect cardiomyocytes from oxidative stress. Free Radic. Biol. Med. 1998, 24, 66–75.pl_PL
dc.referencesTabaczar, S.; Czepas, J.; Koceva-Chyla, A.; Kilanczyk, E.; Piasecka-Zelga, J.; Gwozdzinski, K. The effect of the nitroxide pirolin on oxidative stress induced by doxorubicin and taxanes in the rat brain. J. Physiol. Pharmacol. 2017, 68, 295–308.pl_PL
dc.referencesKoceva-Chyła, A.; Gwo´zdzi ´nski, K.; Kochman, A.; Stolarska, A.; Jó´zwiak, Z. Effects of pyrroline and pyrrolidine nitroxides on lipid peroxidation in heart tissue of rats treated with doxorubicin. Cell. Mol. Biol. Lett. 2003, 8, 179–183.pl_PL
dc.referencesGariboldi, M.B.; Terni, F.; Ravizza, R.; Meschini, S.; Marra, M.; Condello, M.; Arancia, G.; Monti, E. The nitroxide Tempol modulates anthracycline resistance in breast cancer cells. Free Radic. Biol. Med. 2006, 40, 1409–1418.pl_PL
dc.referencesSchreier, S.; Polnaszek, C.F.; Smith, I.C. Spin labels in membranes. Problems in practice. Biochim. Biophys. Acta 1978, 515, 395–436.pl_PL
dc.referencesNusair, N.A.; Lorigan, G.A. Investigating the structural and dynamic properties of n-doxylstearic acid in magnetically-aligned phospholipid bilayers by X-band EPR spectroscopy. Chem. Phys. Lipids 2005, 133, 151–164.pl_PL
dc.referencesKamal-Eldin, A.; Appelqvist, L.-A. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 1996, 31, 671–701.pl_PL
dc.referencesWang, X.; Quinn, P.J. The location and function of vitamin E in membranes (review). Mol. Membr. Biol. 2000, 17, 143–156.pl_PL
dc.referencesNeophytou, C.M.; Constantinou, A.I. Drug Delivery Innovations for Enhancing the Anticancer Potential of Vitamin E Isoforms and Their Derivatives. BioMed Res. Int. 2015, 2015.pl_PL
dc.referencesCzepas, J.; Koceva-Chyła, A.; Gwo´zdzi ´nski, K.; Jó´zwiak, Z. Different effectiveness of piperidine nitroxides against oxidative stress induced by doxorubicin and hydrogen peroxide. Cell. Biol. Toxicol. 2008, 24, 101–112.pl_PL
dc.referencesAtkinson, J.; Harroun, T.; Wassall, S.R.; Stillwell, W.; Katsaras, J. The location and behavior of a-tocopherol in membranes. Mol. Nutr. Food Res. 2010, 54, 641–651.pl_PL
dc.referencesBerthiaume, J.M.; Oliveira, P.J.; Fariss, M.W.; Wallace, K.B. Dietary Vitamin E Decreases Doxorubicin-Induced Oxidative Stress Without Preventing Mitochondrial Dysfunction. Cardiovasc. Toxicol. 2005, 5, 257–267.pl_PL
dc.referencesLegha, S.S.; Wang, Y.M.; Mackay, B.; Ewer, M.; Hortobagyi, G.N.; Benjamin, R.S.; Ali, M.K. Clinical and pharmacologic investigation of the effects of alpha-tocopherol on adriamycin cardiotoxicity. Ann. N. Y. Acad. Sci. 1982, 393, 411–418.pl_PL
dc.referencesvan Dalen, E.C.; Caron, H.N.; Dickinson, H.O.; Kremer, L.C. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst. Rev. 2011, 15, CD003917.pl_PL
dc.referencesTiurin, V.A.; Kagan, V.E.; Serbinova, E.A.; Gorbunov, N.V.; Erin, A.N. The interaction of alpha-tocopherol with phospholipid liposomes: The absence of transbilayer mobility. Biull. Eksp. Biol. Med. 1986, 102, 689–692.pl_PL
dc.referencesUrano, S.; Kitahara, M.; Kato, Y.; Hasegawa, Y.; Matsuo, M. Membrane stabilizing effect of vitamin E: Existence of a hydrogen bond between alpha-tocopherol and phospholipids in bilayer liposomes. J. Nutr. Sci. Vitaminol. 1990, 36, 513–519.pl_PL
dc.referencesWeber, T.; Lu, M.; Andera, L.; Lahm, H.; Gellert, N.; Fariss, M.W.; Korinek, V.; Sattler, W.; Ucker, D.S.; Terman, A.; et al. Vitamin E succinate is a potent novel antineoplastic agent with high selectivity and cooperativity with tumor necrosis factor-related apoptosis inducing ligand (Apo2 ligand) in vivo. Clin. Cancer Res. 2002, 8, 863–869.pl_PL
dc.referencesAnkel, E.G.; Lai, C.S.; Hopwood, L.E.; Zivkovic, Z. Cytotoxicity of commonly used nitroxide radical spin probes. Life Sci. 1987, 40, 495–498.pl_PL
dc.referencesJung, K.; Ristori, S.; Gallori, E.; Martini, G. Stability of water-soluble and lipid-soluble paramagnetic probes in Bacillus subtilis. Biochim. Biophys. Acta 1998, 1425, 387–397.pl_PL
dc.referencesChen, K.-Y.; McLaughlin, M.G. Differences in the reduction kinetics of incorporated spin labels in undifferentiated and differentiated mouse neuroblastoma cells. Biochim. Biophys. Acta 1985, 845, 189–195.pl_PL
dc.referencesSwamy, M.J.; Ciani, L.; Ge, M.; Smith, A.K.; Holowka, D.; Baird, B.; Freed, J.H. Coexisting Domains in the Plasma Membranes of Live Cells Characterized by Spin-Label ESR Spectroscopy. Biophys. J. 2006, 90, 4452–4465.pl_PL
dc.referencesBentinger, M.; Brismar, K.; Dallner, G. The antioxidant role of coenzyme Q. Mitochondrion 2007, 7, S41–S50.pl_PL
dc.referencesLenaz, G.; Samori, B.; Fato, R.; Battino, M.; Castelli, G.P.; Domini, I. Localization and preferred orientations of ubiquinone homologs in model bilayers. Biochem. Cell Biol. 1992, 70, 504–514.pl_PL
dc.referencesEscribá, P.V.; Busquets, X.; Inokuchi, J.; Balogh, G.; Török, Z.; Horváth, I.; Harwood, J.L.; Vígh, L. Membrane lipid therapy: Modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment. Prog. Lipid Res. 2015, 59, 38–53.pl_PL
dc.references. Yeager, M.D.; Feigenson, G.W. Fluorescence quenching in model membranes: Phospholipid acyl chain distributions around small fluorophores. Biochemistry 1990, 29, 4380–4392.pl_PL
dc.referencesLondon, E.; Feigenson, G.W. Fluorescence quenching in model membranes. 1. Characterization of quenching caused by a spin-labeled phospholipid. Biochemistry 1981, 20, 1932–1938.pl_PL
dc.referencesTrnka, J.; Blaikie, F.H.; Smith, R.A.J.; Murphy, M.P. A mitochondria-targeted nitroxide is reduced to its hydroxylamine by ubiquinol in mitochondria. Free Radic. Biol. Med. 2008, 44, 1406–1419.pl_PL
dc.referencesAusili, A.; Torrecillas, A.; Aranda, F.; de Godos, A.; Sánchez-Bautista, S.; Corbalán-García, S.; Gómez-Fernández, J.C. Redox State of Coenzyme Q10 Determines Its Membrane Localization. J. Phys. Chem. B 2008, 112, 12696–12702.pl_PL
dc.referencesVogel, A.; Scheidt, H.A.; Huster, D. The Distribution of Lipid Attached Spin Probes in Bilayers: Application to Membrane Protein Topology. Biophys. J. 2003, 85, 1691–1701.pl_PL
dc.referencesJin, S.; Zhou, F.; Katirai, F.; Li, P.-L. Lipid Raft Redox Signaling: Molecular Mechanisms in Health and Disease. Antioxid. Redox Signal. 2011, 15, 1043–1083.pl_PL
dc.referencesRegev, R.; Yeheskely-Hayon, D.; Katzir, H.; Eytan, G.D. Transport of anthracyclines and mitoxantrone across membranes by a flip-flop mechanism. Biochem. Pharmacol. 2005, 70, 161–169.pl_PL
dc.referencesConstantinides, P.P.; Wang, Y.Y.; Burke, T.G.; Tritton, T.R. Transverse location of anthracyclines in lipid bilayers. Paramagnetic quenching studies. Biophys. Chem. 1990, 35, 259–264.pl_PL
dc.referencesKoceva-Chyła, A.; J ˛edrzejczak, M.; Skierski, J.; Kania, K.; Jó´zwiak, Z. Mechanisms of induction of apoptosis by anthraquinone anticancer drugs aclarubicin and mitoxantrone in comparison with doxorubicin: Relation to drug cytotoxicity and caspase-3 activation. Apoptosis 2005, 10, 1497–1514.pl_PL
dc.referencesZeng, L.; Wu, G.-Z.; Goh, K.J.; Lee, Y.M.; Ng, C.C.; You, A.B.; Wang, J.; Jia, D.; Hao, A.; Yu, Q.; et al. Saturated Fatty Acids Modulate Cell Response to DNA Damage: Implication for Their Role in Tumorigenesis. PLoS ONE 2008, 3, e2329.pl_PL
dc.referencesKajiyama, K.; Sugiyama, M.; Iwahashi, H.; Hidaka, T.; Entman, M.L.; Shimada, I.; Ogura, R. Electron Spin Resonance Studies on the Spin Label of Rat Cardiac Mitochondria Treated with Adriamycin. Kurume Med. J. 1987, 34, 59–64.pl_PL
dc.referencesNilsson, U.A.; Olsson, L.I.; Carlin, G.; Bylund-Fellenius, A.C. Inhibition of lipid peroxidation by spin labels. Relationships between structure and function. J. Biol. Chem. 1989, 264, 11131–11135.pl_PL
dc.referencesMay, J.M.; Qu, Z.-C.; Mendiratta, S. Protection and Recycling of a-Tocopherol in Human Erythrocytes by Intracellular Ascorbic Acid. Arch. Biochem. Biophys. 1998, 349, 281–289.pl_PL
dc.referencesYuann, J.M.; Morse, R.D. Determination by photoreduction of flip-flop kinetics of spin-labeled stearic acids across phospholipid bilayers. Biochim. Biophys. Acta 1999, 1416, 135–144.pl_PL
dc.referencesKagan, V.E.; Fabisiak, J.P.; Shvedova, A.A.; Tyurina, Y.Y.; Tyurin, V.A.; Schor, N.F.; Kawai, K. Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Lett. 2000, 477, 1–7.pl_PL
dc.referencesWaggoner, S.; Kingzett, T.J.; Rottschaefer, S.; Griffith, O.H.; Keith, A.D. A spin-labeled lipid for probing biological membranes. Chem. Phys. Lipids 1969, 3, 245–253.pl_PL
dc.referencesStrober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 2001.pl_PL
dc.referencesGasiorowski, K.; Brokos, B.; Kulma, A.; Ogorzałek, A.; Skórkowska, K. A comparison of the methods applied to detect apoptosis in genotoxically-damaged lymphocytes cultured in the presence of four antimutagens. Cell. Mol. Biol. Lett. 2001, 6, 141–159.pl_PL
dc.references2. Van der Meer, B.W. Fluorescence studies on biological membranes. In Subcellular Biochemistry; Hilderson, H.J., Harris, J.R., Eds.; Plenum Press: New York, NY, USA, 1988; Volume 13, pp. 1–53.pl_PL
dc.referencesHalliwell, B.; Gutteridge, J.M. Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: The role of superoxide and hydroxyl radicals. FEBS Lett. 1981, 128, 347–352.pl_PL
dc.identifier.doihttps://doi.org/10.3390/molecules25215138
dc.disciplinenauki biologicznepl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe