Show simple item record

dc.contributor.authorZajączkowski, Paweł
dc.contributor.authorNieniewski, Mariusz
dc.date.accessioned2021-08-31T06:48:48Z
dc.date.available2021-08-31T06:48:48Z
dc.date.issued2017
dc.identifier.issn1580-3139
dc.identifier.urihttp://hdl.handle.net/11089/38961
dc.description.abstractComparison of the quality of despeckled US medical images is complicated because there is no image of a human body that would be free of speckles and could serve as a reference. A number of various image metrics are currently used for comparison of filtering methods; however, they do not satisfactorily represent the visual quality of images and medical expert’s satisfaction with images. This paper proposes an innovative use of relative multivariate kurtosis for the evaluation of the most important edges in an image. Multivariate kurtosis allows one to introduce an order among the filtered images and can be used as one of the metrics for image quality evaluation. At present there is no method which would jointly consider individual metrics. Furthermore, these metrics are typically defined by comparing the noisy original and filtered images, which is incorrect since the noisy original cannot serve as a golden standard. In contrast to this, the proposed kurtosis is the absolute measure, which is calculated independently of any reference image and it agrees with the medical expert’s satisfaction to a large extent. The paper presents a numerical procedure for calculating kurtosis and describes results of such calculations for a computer-generated noisy image, images of a general purpose phantom and a cyst phantom, as well as real-life images of thyroid and carotid artery obtained with SonixTouch ultrasound machine. 16 different methods of image despeckling are compared via kurtosis. The paper shows that visually more satisfactory despeckling results are associated with higher kurtosis, and to a certain degree kurtosis can be used as a single metric for evaluation of image quality.pl_PL
dc.language.isoenpl_PL
dc.publisherInternational Society for Stereology & Image Analysispl_PL
dc.relation.ispartofseriesImage Analysis & Stereology;36
dc.rightsUznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectforward-backward diffusionpl_PL
dc.subjectmultivariate kurtosispl_PL
dc.subjectnonlinear coherent diffusionpl_PL
dc.subjectspeckle filteringpl_PL
dc.subjectultrasound imagespl_PL
dc.titleComparison of ultrasound image filtering methods by means of multivariable kurtosispl_PL
dc.typeArticlepl_PL
dc.page.number79-94pl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Informatics, University of Lodz, ul. Banacha 22, 90-238 Lodz, Polandpl_PL
dc.identifier.eissn1854-5165
dc.referencesBuades A, Coll B, Morel JM (2005). A non-local algorithm for image denoising. In: Proc IEEE Conf Comput Vis Pattern Recog 2:60-5.pl_PL
dc.referencesCaviedes J, Oberti F (2004). A new sharpness metric based on local kurtosis, edge and energy information. Signal Process: Image Comm 19:147-61.pl_PL
dc.referencesChandler DM (2013). Seven challenges in image quality assessment: past, present, and future research. ISRN Signal Process 2013:905685.pl_PL
dc.referencesDansk (2016a). Dansk Fantom Service, http://www.fantom. dk/1525.html (Last checked Aug 2016).pl_PL
dc.referencesDansk (2016b). Dansk Fantom Service, http://www.fantom. dk/571.htm (Last checked Aug 2016).pl_PL
dc.referencesDeCarlo LT (1997). On the meaning and use of kurtosis. Psych Meth 2:292-307.pl_PL
dc.referencesFerzli R, Karam LJ (2009). A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB). IEEE T Image Process 18:717-28.pl_PL
dc.referencesFerzli R, Girjia L, Ali WS (2010). Efficient implementation of kurtosis based no reference image sharpness metric. In: Proc SPIE 7532: Image Proc Algo Syst VIII 7532:75320Epl_PL
dc.referencesLi L, Lin W, Wang X, Yang G, Bahrami K, Kot AC (2016). No-reference image blur assessment based on discrete orthogonal moments. IEEE T Cybernetics 46:39-50.pl_PL
dc.referencesLin W, Kuo CC (2011). Perceptual visual quality metrics: a survey. J Vis Comm Image Represent 22:297-312.pl_PL
dc.referencesLoizou CP, Pattichis CS, Christodoulou CI, Istepanian RS, Pantziaris M, Nicolaides A (2005). Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery. IEEE T Ultrason Ferr 52:1653-69.pl_PL
dc.referencesLoizou CP, Pattichis CS, Pantziaris M, Tyllis T, Nicolaides A (2006). Quality evaluation of ultrasound imaging in the carotid artery based on normalization and speckle reduction filtering. Med Biol Eng Comput 44:414-26.pl_PL
dc.referencesLoizou CP, Kasparis T, Christodoulides P, Theofanus C, Pantziaris M, Kyriakou E, Pattichis CS (2012). Despeckle filtering in ultrasound video of the common carotid artery. In: Proc 12th IEEE Int Conf Bioinform Bioeng 721-6.pl_PL
dc.referencesLoizou CP (2013). Despeckle Filtering Toolbox, http://www.medinfo.cs.ucy.ac.cy/index.php/downloads /toolboxes/10-matlab-software/matlabsoftware_2013 .zip (Last checked Aug 2016).pl_PL
dc.referencesLoizou CP, Theofanus C, Pantziaris M, Kasparis T (2014). Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery. Comp Methods Programs Biomed 114:109-24.pl_PL
dc.referencesLoizou CP, Pattichis CS (2015). Despeckle Filtering for Ultrasound Imaging and Video. Vol I: Algorithms and Software, Vol. II: Selected Applications. 2nd Ed. Morgan & Claypool.pl_PL
dc.referencesManjon-Herrera JV (2016). Non-Local Means Filter, http://www.mathworks.com/matlabcentral/fileexchange /13176-non-local-means-filter (Last checked Aug 2016).pl_PL
dc.referencesMardia KV (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika 57:519-30.pl_PL
dc.referencesMateo JL, Fernández-Caballero A (2009). Finding out general tendencies in speckle noise reduction in ultrasound images. Expert Syst Appl 36:7786-97.pl_PL
dc.referencesMittal A, Soundararajan R, Bovik AC (2013). Making a “completely blind” image quality analyzer. IEEE Signal Process Lett 20:209-12.pl_PL
dc.referencesNarvekar ND, Karam LJ (2011). A no-reference blur metric based on the cumulative probability of blur detection (CPBD). IEEE T Image Process 20:2678-83.pl_PL
dc.referencesNieniewski M (2014). Enhancement of despeckled ultrasound images by forward-backward diffusion. In: Proc Int Conf Comput Vis Graphics. Lect Not Comput Sci 8671:454-61.pl_PL
dc.referencesNieniewski M, Zaja˛czkowski P (2014). Real-time speckle reduction in ultrasound images by means of nonlinear coherent diffusion using GPU. In: Proc Int Conf Comput Vis Graphics. Lect Not Comput Sci 8671:462- 9.pl_PL
dc.referencesNieniewski M, Zaja˛czkowski P (2016). Real-time US image enhancement by forward-backward diffusion Using GPU. In: Chora´s R, ed. Image Processing and Communications Challenges 7. Cham: Springer. 389:177-86.pl_PL
dc.referencesPratt WK (2007). Digital Image Processing: PIKS Scientific Inside. 4th Ed. Hoboken, NJ: Wiley.pl_PL
dc.referencesRomeu JL, Ozturk A (1993). A comparative study of goodness-of-fit tests for multivariate normality. J Multivariate Anal 46:309-34.pl_PL
dc.referencesRosa R, Monteiro FC (2014). Speckle ultrasound image filtering: performance analysis and comparison. In: Proc Computat Vision Medical Image Process IV:65-69, Taylor & Francis.pl_PL
dc.referencesSanches JM, Laine AF, Suri JS (eds.) (2012). Ultrasound Images. Advances and Applications. New York: Springer.pl_PL
dc.referencesSchäberle W (2005). Ultrasonography in Vascular Diagnosis. Berlin: Springer.pl_PL
dc.referencesSheet D (2016). Pseudo B-mode Ultrasound Image Simulator, http://www.mathworks.com/matlabcentral /fileexchange/34199-pseudo-b-mode-ultrasoundimage- simulator (Last checked Aug 2016).pl_PL
dc.referencesThangavel K, Manavalan R, Aroquiaraj IL (2009). Removal of speckle noise from ultrasound medical image based on special filters: comparative study. ICGST-GVIP J 9(3):25-32.pl_PL
dc.referencesThévenaz P (2016). Point Picker, http://bigwww.epfl.ch/ thevenaz/pointpicker/ (Last checked Aug 2016).pl_PL
dc.referencesTimm WN (2002). Applied Multivariate Analysis. New York: Springer.pl_PL
dc.referencesTong H, Li M, Zhang HJ, Zhang C, He J, Ma WY (2005). Learning no-reference quality metric by examples. In: Proc 11th Int Conf Multimedia Model 247-54.pl_PL
dc.referencesVirtanen T, Nuutinen M, Vaahteranoksa M, Oittinen P, Häkkinen J (2015). CID2013: a database for evaluating no-reference image quality assessment algorithms. IEEE T Image Process 24:390-402.pl_PL
dc.referencesWang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004). Image quality assessment: from error visibility to structural similarity algorithms. IEEE T Image Process 13:600-12.pl_PL
dc.referencesWang Z, Bovik AC (2006). Modern Image Quality Assessment. San Rafael: Morgan & Claypool.pl_PL
dc.referencesWu Q, Li H, Meng F, Ngan KN, Zhu S (2015). No reference image quality assessment metric via multidomain structural information and piecewise regression. J Vis Commun Image R 32:205-16.pl_PL
dc.referencesZhang NF, Postek MT, Larrabee RD, Vládar AE, Kerry WJ, Jones SN (1999). Image sharpness measurement in the scanning electron microscope – Part III. Scanning 21:246-52.pl_PL
dc.referencesZhang J, Ong SH, Le TM (2011). Kurtosis-based noreference quality assessment of JPEG 2000 images. Sign Process: Image Comm 26:13-23.pl_PL
dc.referencesZhang X, Feng X, Wang W, Xue W (2013). Edge strength similarity for image quality assessment. IEEE Signal Process Lett 20:319-22.pl_PL
dc.referencesZhu T, Karam L (2014). A no-reference objective image quality metric based on perceptually weighted local noise. EURASIP J Image Vide 2014:5.pl_PL
dc.identifier.doi10.5566/ias.1639
dc.disciplineinformatykapl_PL
dc.disciplinematematykapl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe