dc.contributor.author | Graniak, Grzegorz | |
dc.contributor.author | Olender, Alina | |
dc.contributor.author | Naylor, Katarzyna | |
dc.date.accessioned | 2021-08-27T09:53:20Z | |
dc.date.available | 2021-08-27T09:53:20Z | |
dc.date.issued | 2020-12-30 | |
dc.identifier.issn | 1730-2366 | |
dc.identifier.uri | http://hdl.handle.net/11089/38848 | |
dc.description.abstract | The study describes the preparation of the phylogenetic differentiation of Bacillus cereus strains. The Bacillus cereus group of bacteria is very important for human and animal health. The multilocus sequence typing scheme has been used to present this group of bacteria’s phylogenetic relationship and structure. The MLST system was established using 60 isolates of B. anthracis, B. cereus sensu stricto, B. thuringiensis, and transitional environment strains of Bacillus spp. As a negative control, five strains of B. subtilis and B. megaterium were used. Primers for amplification and sequencing were designed to target highly conserved internal fragment of seven housekeeping genes: glpF, gmk, ilvD, pta, pur, pycA, and tpi. A total of 22 different sequence types (STs) were distinguished. Analysis of the sequence data showed that all of the Bacillus cereus strains are very closely related. The MLST scheme exhibited a high level of resolution that can be used as an excellent tool for studying the phylogenetic relationship, epidemiology, and population structure of the Bacillus cereus group strains. The MLST method additionally allows us to define the phylogenetic relationship between very closely related strains based on a combination of the sequences of all seven alleles fragments and each of them separately. Thus, this genetic investigation tool is very useful in epidemiological investigation of potential military/ bioterrorist use of B. anthracis. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Acta Universitatis Lodziensis. Folia Biologica et Oecologica | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | Bacillus cereus group | en |
dc.subject | multilocus sequence typing | en |
dc.subject | sequencing | en |
dc.subject | housekeeping genes | en |
dc.subject | phylogenetic differentiation | en |
dc.subject | BioNumerics | en |
dc.title | Differentiation of Bacillus anthracis and other Bacillus cereus group bacterial strains using multilocus sequence typing method | en |
dc.type | Article | |
dc.page.number | 12-21 | |
dc.contributor.authorAffiliation | Graniak, Grzegorz - Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Centre, Lubelska 4, 24-100 Pulawy, Poland | en |
dc.contributor.authorAffiliation | Olender, Alina - Medical University in Lublin, Department of Medical Microbiology, Chódzki 1, 20-093 Lublin, Poland | en |
dc.contributor.authorAffiliation | Naylor, Katarzyna - Medical University in Lublin, Department of Didactics and Medical Simulation, Chódzki 4, 20-093 Lublin, Poland | en |
dc.identifier.eissn | 2083-8484 | |
dc.references | Bolt, F., Cassiday, P., Tondella, M.L., Dezoysa, A., Efstratiou, A., Sing, A., Zasada, A., Bernard, K., Guiso, N., Badell, E., Rosso, M.-L., Baldwin, A., Dowson, C. 2010. Multilocus sequence typing identifies evidence for recombination and two distinct lineages of Corynebacterium diphtheriae. Journal of Clinical Microbiology, 48: 4177–4185. | en |
dc.references | Brossier, F., Mock, M. 2001. Toxins of Bacillus anthracis. Toxicon, 39(11): 1747–1755. | en |
dc.references | Centers for Disease Control and Prevention 2017. Emergency Preparedness and Response –Bioterrorism Agents/Diseases. Available at https://emergency.cdc.gov/agent/agentlist-category.asp Accessed 7.09.2017. | en |
dc.references | Chang, B., Wada, A., Hosoya, M., Oishi, T., Ishiwada, N., Oda, M., Sato, T., Terauchi, Y., Okada, K., Nishi, J., Akeda, H., Kamiya, H., Ohnishi, M., Ihara, T., Japanese Invasive Disease Study Group, 2014. Characteristics of group B streptococcus isolated from infants with invasive infections: a population-based study in Japan. Japanese Journal of Infectious Diseases, 67: 356–360. | en |
dc.references | Cherif, A., Borin, S., Rizzi, A., Ouzari, H., Boudabous, A., Daffonchio, D. 2003. Bacillus anthracis diverges from related clades of the Bacillus cereus group in 16S-23S ribosomal DNA intergenic transcribed spacers containing tRNA genes. Applied and Environmental Microbiology, 69: 33–40. | en |
dc.references | Cieślik, P., Knap, J., Kołodziej, M., Mirski, T., Joniec, J., Graniak, G., Żakowska, D., Winnicka, I., Bielawska-Drózd, A. 2015. Real-time PCR identification of unique Bacillus anthracis sequences. Folia Biologica (Praha), 61(5): 178–183. | en |
dc.references | DeVos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23: 4407–4414. | en |
dc.references | Diavatopoulos, D.A., Cummings, C.A., Schouls, L.M., Brinig, M.M., Relman, D.A., Mooi, F.R. 2005. Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathogens, 1(4): e45. Doi: https://doi.org/10.1371/journal.ppat.0010045 | en |
dc.references | Duan, R., Liang, J., Shi, G., Cui, Z., Hai, R., Wang, P., Xiao, Y., Li, K., Qiu, H., Gu, W., Du, X., Jing, H. 2014. Homology analysis of pathogenic Yersinia species Yersinia enterocolitica, Yersinia pseudotuberculosis, and Yersinia pestis based on multilocus sequence typing. Journal of Clinical Microbiology, 52: 20–29. | en |
dc.references | Elleuch, J., Zghal RZ, Jemaà, M., Azzouz, H., Tounsi, S., Jaoua, S. 2014. New Bacillus thuringiensis toxin combinations for biological control of lepidopteran larvae. International Journal of Biological Macromolecules, 65: 148–154. | en |
dc.references | Frederiksen, K., Rosenquist, H., Jørgensen, K., Wilcks, A. 2006. Occurrence of natural Bacillus thuringiensis contaminants and residues of Bacillus thuringiensis-based insecticides on fresh fruits and vegetables. Applied and Environmental Microbiology, 72: 3435–3440. | en |
dc.references | Gierczyński, R. 2010. Diagnostics and molecular epidemiology of Bacillus anthracis. Postępy Mikrobiologii, 49(3): 165–172 (in Polish). | en |
dc.references | Helgason, E., Caugant, D.A., Olsen, I., Kolstø, A.B. 2000a. Genetic structure of population of Bacillus cereus and B. thuringiensis isolates associated with periodontitis and other human infections. Journal of Clinical Microbiology, 38: 1615–1622. | en |
dc.references | Helgason, E., Okstad, O.A., Caugant, D.A., Johansen, H.A., Fouet, A., Mock, M., Hegna, I., Kolstø, A.B. 2000b. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence.Applied and Environmental Microbiology, 66: 2627–2630. | en |
dc.references | Helgason, E., Tourasse, N.J., Meisal, R., Caugant, D.A., Kolstø, A.B. 2004. Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Applied and Environmental Microbiology, 70: 191–201. | en |
dc.references | Hoffmaster, A.R., Hill, K.K., Gee, J.E., Marston, C.K., De, B.K., Popovic, T., Sue, D., Wilkins, P.P., Avashia, S.B., Drumgoole, R., Helma, C.H., Ticknor, L.O., Okinaka, R.T., Jackson, P.J. 2006. Characterization of Bacillus cereus isolates associated with fatal pneumonias: strains are closely related to Bacillus anthracis and harbor B. anthracis virulence genes. Journal of Clinical Microbiology, 44: 3352–3360. | en |
dc.references | Kim, K, Cheon, E., Wheeler, K.E., Youn, Y., Leighton, T.J., Park, C., Kim, W., Chung S.-I. 2005. Determination of the most closely related Bacillus isolates to Bacillus anthracis by multilocus sequence typing. Yale Journal of Biology and Medicine, 78: 1–14. | en |
dc.references | Kim, J.B., Jeong, H.R., Park, Y.B., Kim, J.M., Oh, D.H. 2010. Food poisoning associated with emetic-type of Bacillus cereus in Korea. Foodborne Pathogens and Disease, 7: 555–563. | en |
dc.references | Ludwig, W., Schleifer, K.H., Whitman, W.B. 2009. Revised road map to the phylum Firmicutes. In: Bergey’s manual of systematic bacteriology. Vol. 3 (DeVos, P., Garrity, G., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.-H., Whitman, W. eds), Springer, New York; pp 1–128. | en |
dc.references | Maiden, M.C., Bygraves, J.A., Feil, E., Morelli, G., Russell, J.E., Urwin, R., Zhang, Q., Zhou, J., Zurth, K., Caugant, D.A., Feavers, I.M., Achtman, M., Spratt, B.G. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences USA, 93: 3140–3145. | en |
dc.references | Økstad, O.A., Kolstø, A.B. 2011. Chapter 2 Genomics of Bacillus Species. Genomics of Foodborne Bacterial Pathogens. Food Microbiology and Food Safety, 29–53. | en |
dc.references | Olsen, J.S., Scholz, H., Fillo, S., Ramisse, V., Lista, F., Trømborg, A.K., Aarskaug, T., Thrane, I., Blatny, J.M. 2014. Analysis of the genetic distribution among members of Clostridium botulinum group I using a novel multilocus sequence typing (MLST) assay. Journal of Microbiological Methods, 96: 84–91. | en |
dc.references | Patra, G., Vaissaire, J., Weber-Levy, M., Le Doujet, C., Mock, M. 1998. Molecular characterization of Bacillus strains involved in outbreaks of anthrax in France in 1997. Journal of Clinical Microbiology, 36: 3412–3414. | en |
dc.references | Priest, F.G., Barker, M., Baillie, L.W., Holmes, E.C., Maiden, M.C. 2004. Population structure and evolution of the Bacillus cereus group. Journal of Bacteriology, 186: 7959–7970. | en |
dc.references | PubMLST. 2018. Bacillus cereus MLST Databases. Available at https://pubmlst.org/bcereus/ Accessed 24.07.2018 | en |
dc.references | Radnedge, L., Agron, P.G., Hill, K.K., Jackson, P.J., Ticknor, L.O., Keim, P., Andersen, G.L. 2003. Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis. Applied and Environmental Microbiology, 69: 2755–2764. | en |
dc.references | Ramisse, V., Patra, G., Vaissaire, J., Mock, M. 1999. The Ba813 chromosomal DNA sequence effectively traces the whole Bacillus anthracis community. Journal of Applied Microbiology, 87: 224–228. | en |
dc.references | Selander, R.K., Caugant, D.A., Ochman, H., Musser, J.M., Gilmour, M.N., Whittam, T.S. 1986. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Applied and Environmental Microbiology, 51: 873–884. | en |
dc.references | Singh, P.K., Ramachandran, G., Ramos-Ruiz, R., Peiró-Pastor, R., Abia, D., Wu, L.J., Meijer, W.J.J. 2013. Mobility of the native Bacillus subtilis conjugative plasmid pLS20 is regulated by intercellular signaling. PLoS Genetics, 9(10): e1003892. Doi: https://doi.org/10.1371/journal.pgen.1003892 | en |
dc.references | Skaare, D., Anthonisen, I.L., Caugant, D.A., Jenkins, A., Steinbakk, M., Strand, L., Sundsfjord, A., Tveten, Y., Kristiansen B.-E. 2014. Multilocus sequence typing and ftsI sequencing: a powerful tool for surveillance of penicillin-binding protein 3-mediated beta-lactam resistance in nontypeable Haemophilus influenzae. BMC Microbiology, 20: 14, 131. Doi: https://doi.org/10.1186/1471-2180-14-131 | en |
dc.references | Sorokin, A., Candelon, B., Guilloux, K., Galleron, N., Wackerow-Kouzova, N., Ehrlich, S.D., Bourguet, D., Sanchis, V. 2006. Multiple-locus sequence typing analysis of Bacillus cereus and Bacillus thuringiensis reveals separate clustering and a distinct population structure of psychrotrophic strains. Applied and Environmental Microbiology, 72: 1569–1578. | en |
dc.references | Soufiane, B., Côté, J.C. 2013. Bacillus weihenste-phanensis characteristics are present in Bacillus cereus and Bacillus mycoides strains. FEMS Microbiology Letters, 341: 127–137. | en |
dc.references | Souza, R,A,, Imori, P.F., Passaglia, J., Pitondo-Silva, A., Falcão, J.P. 2013. Molecular typing of Yersinia pseudotuberculosis strains isolated from livestock in Brazil. Genetics and Molecular Research, 12: 4869–4878. | en |
dc.references | Svensson, B., Monthán, A., Guinebretière, M.H., Nguyen-Thé, C., Christiansson, A. 2007. Toxin production potential and the detection of toxin genes among strains of the Bacillus cereus group isolated along the dairy production chain. International Dairy Journal, 17: 1201–1208. | en |
dc.references | Tenover, F.C., Arbeit, R.D., Goering, R.V., Mickelsen, P.A., Murray, B.E., Persing, D.H., Swaminathan, B. 1995. Interpreting chromo-somal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. Journal of Clinical Microbiology, 33: 2233–2239. | en |
dc.references | Tenover, F.C., Arbeit, R.D., Goering, R.V. 1997. How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: a review for healthcare epidemiologists. Molecular Typing Working Group of the Society for Healthcare Epidemiology of America. Infection Control & Hospital Epidemiology, 18: 426–439. | en |
dc.references | Thorsen, L., Hansen, B.M., Nielsen, K.F., Hendriksen, N.B., Phipps, R.K., Budde, B.B. 2006. Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium. Applied and Environmental Microbiology, 72: 5118–5121. | en |
dc.references | Ticknor, LO, Kolstø, A.B., Hill, K.K., Keim, P., Laker, M.T., Tonks, M., Jackson, P.J. 2001. Fluorescent amplified fragment length polymorphism analysis of norwegian Bacillus cereus and Bacillus thuringiensis soil isolates. Applied and Environmental Microbiology, 67: 4863–4873. | en |
dc.references | Turnbull, P., Hutson, R.A., Ward, M.J., Jones, M.N., Quinn, C.P., Finnie, N.J., Duggleby, C.J., Kramer, J.K., Melling, J. 1992. Bacillus anthracis but not always anthrax. Journal of Applied Microbiology, 72: 21–28. | en |
dc.references | Turnbull, P. 1999. Definitive identification of Bacillus anthracis – a review. Journal of Applied Microbiology, 87: 237–240. | en |
dc.references | Turnbull, P. 2008. Anthrax in humans and animals. 4th ed. World Health Organization. Geneva. | en |
dc.references | Zhou, H., Zhao, X., Wu, R., Cui, Z., Diao, B., Li, J., Wang, D., Kan, B., Liang, W. 2014. Population structural analysis of O1 El Tor Vibrio cholerae isolated in China among the seventh cholera pandemic on the basis of multilocus sequence typing and virulence gene profiles. Infection, Genetics and Evolution, 22: 72–80. | en |
dc.references | Zhou, Y., Burnham, C.A., Hink, T., Chen, L., Shaikh, N., Wollam, A., Sodergren, E., Weinstock, G.M., Tarr, P.I., Dubberke, E.R. 2014. Phenotypic and genotypic analysis of Clostridium difficile isolates: a single center study. Journal of Clinical Microbiology, 52: 4260–4266. | en |
dc.contributor.authorEmail | Graniak, Grzegorz - grzegorz.graniak@gmail.com | |
dc.contributor.authorEmail | Olender, Alina - grzegorz.graniak@gmail.com | |
dc.contributor.authorEmail | Naylor, Katarzyna - grzegorz.graniak@gmail.com | |
dc.identifier.doi | 10.18778/1730-2366.16.02 | |
dc.relation.volume | 16 | |