dc.contributor.author | Zawadzki, Tomasz | |
dc.date.accessioned | 2021-08-25T06:07:02Z | |
dc.date.available | 2021-08-25T06:07:02Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Zawadzki, T. On conformal submersions with geodesic or minimal fibers. Ann Glob Anal Geom 58, 191–205 (2020). https://doi.org/10.1007/s10455-020-09720-x | pl_PL |
dc.identifier.issn | 1572-9060 | |
dc.identifier.uri | http://hdl.handle.net/11089/38827 | |
dc.description.abstract | We prove that every conformal submersion from a round sphere onto an Einstein manifold
with fbers being geodesics is—up to an isometry—the Hopf fbration composed with a
conformal difeomorphism of the complex projective space of appropriate dimension. We
also show that there are no conformal submersions with minimal fbers between manifolds
satisfying certain curvature assumptions. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer | pl_PL |
dc.relation.ispartofseries | Annals of Global Analysis and Geometry;58 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Conformal submersions | pl_PL |
dc.subject | Foliations | pl_PL |
dc.subject | Einstein metrics | pl_PL |
dc.title | On conformal submersions with geodesic or minimal fibers | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 191-205 | pl_PL |
dc.contributor.authorAffiliation | Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, Poland | pl_PL |
dc.identifier.eissn | 0232-704X | |
dc.references | Aubin, T.: Equations diferentielles non lineaires et probleme de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55, 269–296 (1976) | pl_PL |
dc.references | Besse, A.L.: Einstein Manifolds. Springer-Verlag, Berlin (1987) | pl_PL |
dc.references | Ehresmann, C.: Les connexions infnitesimales dans un espace fbre diferentiable, Colloque de topologie (espaces fbres), Bruxelles, 1950, Georges Thone, pp. 29–55. Liege; Masson et Cie, Paris (1951) | pl_PL |
dc.references | Escobales Jr., R.H.: Riemannian submersions with totally geodesic fbers. J. Difer. Geom. 10(2), 253– 276 (1975) | pl_PL |
dc.references | Evans, L.C.: Partial Diferential Equations. AMS, Providence (1998) | pl_PL |
dc.references | Gluck, H., Warner, F.W.: Great circle fbrations of the three-sphere. Duke Math. J. 50, 107–132 (1983) | pl_PL |
dc.references | Gluck, H., Warner, F., Yang, C.T.: Division algebras, fbrations of spheres by great spheres and the topological determination of space by the gross behavior of its geodesics. Duke Math. J. 50, 1041– 1076 (1983) | pl_PL |
dc.references | Gromoll, D., Walschap, G.: Metric Foliations and Curvature. Birkhauser, Basel (2009) | pl_PL |
dc.references | Gudmundsson, S.: On the geometry of harmonic morphisms. Math. Proc. Camb. Philos. Soc. 108, 461–466 (1990) | pl_PL |
dc.references | Heller, S.G.: Conformal fbrations of S3 by circles. In: Loubeau, E., Montaldo, S. (eds.) Harmonic Maps and Diferential Geometry, pp. 195–202, Contemp. Math. 542, AMS, Providence (2011) | pl_PL |
dc.references | Kobayashi, S., Nomizu, N.: Foundations of Diferential Geometry I. Interscience, New York (1963) | pl_PL |
dc.references | McKay, B.: The Blaschke conjecture and great circle fbrations of spheres. Am. J. Math. 126(5), 1155– 1191 (2004) | pl_PL |
dc.references | McKay, B.: The Blaschke conjecture and great circle fbrations of spheres, arXiv:math/0112027 [math. DG] | pl_PL |
dc.references | Naveira, A.M.: A classifcation of Riemannian almost-product manifolds. Rend. Mat. 7(3), 577–592 (1983) | pl_PL |
dc.references | Cahn, P., Gluck, H., Nuchi, H.: Germs of fbrations of spheres by great circles always extend to the whole sphere. Algebra Geom. Topol. 18, 1323–1360 (2018) | pl_PL |
dc.references | O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13, 459–469 (1966) | pl_PL |
dc.references | Obata, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 14, 333–340 (1962) | pl_PL |
dc.references | Ranjan, A.: Riemannian submersions of spheres with totally geodesic fbers. Osaka J. Math. 22, 243– 260 (1985) | pl_PL |
dc.references | Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Difer. Geom. 20, 479–495 (1984) | pl_PL |
dc.references | Trudinger, N.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa 22, 265–274 (1968) | pl_PL |
dc.references | Walczak, P.: An integral formula for a Riemannian manifold with two orthogonal complementary distributions. Colloq. Math. 58, 243–252 (1990) | pl_PL |
dc.references | Wilking, B.: Index parity of closed geodesics and rigidity of Hopf fbrations. Invent. Math. 144, 281– 295 (2001) | pl_PL |
dc.references | Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12, 21–37 (1960) | pl_PL |
dc.references | Zawadzki, T.: Existence conditions for conformal submersions with totally umbilical fbers. Difer. Geom. Appl. 35, 69–85 (2014) | pl_PL |
dc.contributor.authorEmail | tomasz.zawadzki@wmii.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.1007/s10455-020-09720-x | |
dc.discipline | matematyka | pl_PL |