Pokaż uproszczony rekord

dc.contributor.authorZawadzki, Tomasz
dc.date.accessioned2021-08-25T06:07:02Z
dc.date.available2021-08-25T06:07:02Z
dc.date.issued2020
dc.identifier.citationZawadzki, T. On conformal submersions with geodesic or minimal fibers. Ann Glob Anal Geom 58, 191–205 (2020). https://doi.org/10.1007/s10455-020-09720-xpl_PL
dc.identifier.issn1572-9060
dc.identifier.urihttp://hdl.handle.net/11089/38827
dc.description.abstractWe prove that every conformal submersion from a round sphere onto an Einstein manifold with fbers being geodesics is—up to an isometry—the Hopf fbration composed with a conformal difeomorphism of the complex projective space of appropriate dimension. We also show that there are no conformal submersions with minimal fbers between manifolds satisfying certain curvature assumptions.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringerpl_PL
dc.relation.ispartofseriesAnnals of Global Analysis and Geometry;58
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectConformal submersionspl_PL
dc.subjectFoliationspl_PL
dc.subjectEinstein metricspl_PL
dc.titleOn conformal submersions with geodesic or minimal fiberspl_PL
dc.typeArticlepl_PL
dc.page.number191-205pl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, Polandpl_PL
dc.identifier.eissn0232-704X
dc.referencesAubin, T.: Equations diferentielles non lineaires et probleme de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55, 269–296 (1976)pl_PL
dc.referencesBesse, A.L.: Einstein Manifolds. Springer-Verlag, Berlin (1987)pl_PL
dc.referencesEhresmann, C.: Les connexions infnitesimales dans un espace fbre diferentiable, Colloque de topologie (espaces fbres), Bruxelles, 1950, Georges Thone, pp. 29–55. Liege; Masson et Cie, Paris (1951)pl_PL
dc.referencesEscobales Jr., R.H.: Riemannian submersions with totally geodesic fbers. J. Difer. Geom. 10(2), 253– 276 (1975)pl_PL
dc.referencesEvans, L.C.: Partial Diferential Equations. AMS, Providence (1998)pl_PL
dc.referencesGluck, H., Warner, F.W.: Great circle fbrations of the three-sphere. Duke Math. J. 50, 107–132 (1983)pl_PL
dc.referencesGluck, H., Warner, F., Yang, C.T.: Division algebras, fbrations of spheres by great spheres and the topological determination of space by the gross behavior of its geodesics. Duke Math. J. 50, 1041– 1076 (1983)pl_PL
dc.referencesGromoll, D., Walschap, G.: Metric Foliations and Curvature. Birkhauser, Basel (2009)pl_PL
dc.referencesGudmundsson, S.: On the geometry of harmonic morphisms. Math. Proc. Camb. Philos. Soc. 108, 461–466 (1990)pl_PL
dc.referencesHeller, S.G.: Conformal fbrations of S3 by circles. In: Loubeau, E., Montaldo, S. (eds.) Harmonic Maps and Diferential Geometry, pp. 195–202, Contemp. Math. 542, AMS, Providence (2011)pl_PL
dc.referencesKobayashi, S., Nomizu, N.: Foundations of Diferential Geometry I. Interscience, New York (1963)pl_PL
dc.referencesMcKay, B.: The Blaschke conjecture and great circle fbrations of spheres. Am. J. Math. 126(5), 1155– 1191 (2004)pl_PL
dc.referencesMcKay, B.: The Blaschke conjecture and great circle fbrations of spheres, arXiv:math/0112027 [math. DG]pl_PL
dc.referencesNaveira, A.M.: A classifcation of Riemannian almost-product manifolds. Rend. Mat. 7(3), 577–592 (1983)pl_PL
dc.referencesCahn, P., Gluck, H., Nuchi, H.: Germs of fbrations of spheres by great circles always extend to the whole sphere. Algebra Geom. Topol. 18, 1323–1360 (2018)pl_PL
dc.referencesO’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13, 459–469 (1966)pl_PL
dc.referencesObata, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 14, 333–340 (1962)pl_PL
dc.referencesRanjan, A.: Riemannian submersions of spheres with totally geodesic fbers. Osaka J. Math. 22, 243– 260 (1985)pl_PL
dc.referencesSchoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Difer. Geom. 20, 479–495 (1984)pl_PL
dc.referencesTrudinger, N.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa 22, 265–274 (1968)pl_PL
dc.referencesWalczak, P.: An integral formula for a Riemannian manifold with two orthogonal complementary distributions. Colloq. Math. 58, 243–252 (1990)pl_PL
dc.referencesWilking, B.: Index parity of closed geodesics and rigidity of Hopf fbrations. Invent. Math. 144, 281– 295 (2001)pl_PL
dc.referencesYamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12, 21–37 (1960)pl_PL
dc.referencesZawadzki, T.: Existence conditions for conformal submersions with totally umbilical fbers. Difer. Geom. Appl. 35, 69–85 (2014)pl_PL
dc.contributor.authorEmailtomasz.zawadzki@wmii.uni.lodz.plpl_PL
dc.identifier.doi10.1007/s10455-020-09720-x
dc.disciplinematematykapl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe