Show simple item record

dc.contributor.authorZawadzki, Tomasz
dc.date.accessioned2021-08-25T06:07:02Z
dc.date.available2021-08-25T06:07:02Z
dc.date.issued2020
dc.identifier.citationZawadzki, T. On conformal submersions with geodesic or minimal fibers. Ann Glob Anal Geom 58, 191–205 (2020). https://doi.org/10.1007/s10455-020-09720-xpl_PL
dc.identifier.issn1572-9060
dc.identifier.urihttp://hdl.handle.net/11089/38827
dc.description.abstractWe prove that every conformal submersion from a round sphere onto an Einstein manifold with fbers being geodesics is—up to an isometry—the Hopf fbration composed with a conformal difeomorphism of the complex projective space of appropriate dimension. We also show that there are no conformal submersions with minimal fbers between manifolds satisfying certain curvature assumptions.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringerpl_PL
dc.relation.ispartofseriesAnnals of Global Analysis and Geometry;58
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectConformal submersionspl_PL
dc.subjectFoliationspl_PL
dc.subjectEinstein metricspl_PL
dc.titleOn conformal submersions with geodesic or minimal fiberspl_PL
dc.typeArticlepl_PL
dc.page.number191-205pl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, Polandpl_PL
dc.identifier.eissn0232-704X
dc.referencesAubin, T.: Equations diferentielles non lineaires et probleme de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55, 269–296 (1976)pl_PL
dc.referencesBesse, A.L.: Einstein Manifolds. Springer-Verlag, Berlin (1987)pl_PL
dc.referencesEhresmann, C.: Les connexions infnitesimales dans un espace fbre diferentiable, Colloque de topologie (espaces fbres), Bruxelles, 1950, Georges Thone, pp. 29–55. Liege; Masson et Cie, Paris (1951)pl_PL
dc.referencesEscobales Jr., R.H.: Riemannian submersions with totally geodesic fbers. J. Difer. Geom. 10(2), 253– 276 (1975)pl_PL
dc.referencesEvans, L.C.: Partial Diferential Equations. AMS, Providence (1998)pl_PL
dc.referencesGluck, H., Warner, F.W.: Great circle fbrations of the three-sphere. Duke Math. J. 50, 107–132 (1983)pl_PL
dc.referencesGluck, H., Warner, F., Yang, C.T.: Division algebras, fbrations of spheres by great spheres and the topological determination of space by the gross behavior of its geodesics. Duke Math. J. 50, 1041– 1076 (1983)pl_PL
dc.referencesGromoll, D., Walschap, G.: Metric Foliations and Curvature. Birkhauser, Basel (2009)pl_PL
dc.referencesGudmundsson, S.: On the geometry of harmonic morphisms. Math. Proc. Camb. Philos. Soc. 108, 461–466 (1990)pl_PL
dc.referencesHeller, S.G.: Conformal fbrations of S3 by circles. In: Loubeau, E., Montaldo, S. (eds.) Harmonic Maps and Diferential Geometry, pp. 195–202, Contemp. Math. 542, AMS, Providence (2011)pl_PL
dc.referencesKobayashi, S., Nomizu, N.: Foundations of Diferential Geometry I. Interscience, New York (1963)pl_PL
dc.referencesMcKay, B.: The Blaschke conjecture and great circle fbrations of spheres. Am. J. Math. 126(5), 1155– 1191 (2004)pl_PL
dc.referencesMcKay, B.: The Blaschke conjecture and great circle fbrations of spheres, arXiv:math/0112027 [math. DG]pl_PL
dc.referencesNaveira, A.M.: A classifcation of Riemannian almost-product manifolds. Rend. Mat. 7(3), 577–592 (1983)pl_PL
dc.referencesCahn, P., Gluck, H., Nuchi, H.: Germs of fbrations of spheres by great circles always extend to the whole sphere. Algebra Geom. Topol. 18, 1323–1360 (2018)pl_PL
dc.referencesO’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13, 459–469 (1966)pl_PL
dc.referencesObata, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 14, 333–340 (1962)pl_PL
dc.referencesRanjan, A.: Riemannian submersions of spheres with totally geodesic fbers. Osaka J. Math. 22, 243– 260 (1985)pl_PL
dc.referencesSchoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Difer. Geom. 20, 479–495 (1984)pl_PL
dc.referencesTrudinger, N.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa 22, 265–274 (1968)pl_PL
dc.referencesWalczak, P.: An integral formula for a Riemannian manifold with two orthogonal complementary distributions. Colloq. Math. 58, 243–252 (1990)pl_PL
dc.referencesWilking, B.: Index parity of closed geodesics and rigidity of Hopf fbrations. Invent. Math. 144, 281– 295 (2001)pl_PL
dc.referencesYamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12, 21–37 (1960)pl_PL
dc.referencesZawadzki, T.: Existence conditions for conformal submersions with totally umbilical fbers. Difer. Geom. Appl. 35, 69–85 (2014)pl_PL
dc.contributor.authorEmailtomasz.zawadzki@wmii.uni.lodz.plpl_PL
dc.identifier.doi10.1007/s10455-020-09720-x
dc.disciplinematematykapl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe