dc.contributor.author | Balcerzak, Tadeusz | |
dc.contributor.author | Szałowski, Karol | |
dc.date.accessioned | 2021-08-24T09:11:46Z | |
dc.date.available | 2021-08-24T09:11:46Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | http://hdl.handle.net/11089/38825 | |
dc.description.abstract | In the paper a computational study of the electrocaloric efect is presented for a cubic nanocluster
consisting of 8 sites. The system of interest is described by means of an extended Hubbard model in
external electric feld at half flling of the energy levels. The thermodynamic description is obtained
within canonical ensemble formalism on the basis of exact numerical diagonalization of the
system Hamiltonian. In particular, the entropy and the specifc heat are determined as a function
of temperature and external electric feld. The electrocaloric efect is described quantitatively by
isothermal entropy change. The behaviour of this quantity is thoroughly analysed as a function
of extended Hubbard model parameters, temperature and electric feld variation magnitude. The
existence of direct and inverse electrocaloric efect is predicted for some range of model parameters. A
high sensitivity to Hubbard model parameters is shown, what paves the way towards controlling and
tuning the efect. A non-linear, quadratic dependence of isothermal entropy change on electric feld
variation magnitude is demonstrated. The potential for applications of electrocaloric efect in strongly
correlated nanoclusters is shown. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer Nature | pl_PL |
dc.relation.ispartofseries | Scientific Reports;8 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | electrocaloric efect | pl_PL |
dc.subject | cubic Hubbard nanoclusters | pl_PL |
dc.title | Electrocaloric effect in cubic Hubbard nanoclusters | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 1-10 | pl_PL |
dc.contributor.authorAffiliation | Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, ulica Pomorska 149/153, PL90-236, Łódź, Poland | pl_PL |
dc.identifier.eissn | 2045-2322 | |
dc.references | Crossley, S., Mathur, N. D. & Moya, X. New developments in caloric materials for cooling applications. AIP Advances 5, 067153 (2015). | pl_PL |
dc.references | Takeuchi, I. & Sandeman, K. Solid-state cooling with caloric materials. Physics Today 68, 48 (2015). | pl_PL |
dc.references | Mañosa, L., Planes, A. & Acet, M. Advanced materials for solid-state refrigeration. Journal of Materials Chemistry A 1, 4925–4936 (2013). | pl_PL |
dc.references | Tishin, A. M. & Spichkin, Y. I. The Magnetocaloric Effect and its Applications (CRC Press, 2016). | pl_PL |
dc.references | Franco, V., Blázquez, J. S., Ingale, B. & Conde, A. The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models. Annual Review of Materials Research 42, 305–342 (2012). | pl_PL |
dc.references | Correia, T. & Zhang, Q. Electrocaloric Effect: An Introduction. In Correia, T. & Zhang, Q. (eds.) Electrocaloric Materials 1–15 (Springer Berlin Heidelberg, 2014). | pl_PL |
dc.references | Kutnjak, Z., Rožič, B., Pirc, R. & Webster, J. G. Electrocaloric Effect: Theory, Measurements, and Applications. In Wiley Encyclopedia of Electrical and Electronics Engineering (John Wiley & Sons, Inc., 1999). | pl_PL |
dc.references | Plaznik, U. et al. Electrocaloric cooling: The importance of electric-energy recovery and heat regeneration. EPL 111, 57009 (2015). | pl_PL |
dc.references | Ožbolt, M., Kitanovski, A., Tušek, J. & Poredoš, A. Electrocaloric refrigeration: Thermodynamics, state of the art and future perspectives. International Journal of Refrigeration 40, 174–188 (2014). | pl_PL |
dc.references | Valant, M. Electrocaloric materials for future solid-state refrigeration technologies. Progress in Materials Science 57, 980–1009 (2012). | pl_PL |
dc.references | Scott, J. F. Electrocaloric Materials. Annual Review of Materials Research 41, 229–240 (2011). | pl_PL |
dc.references | Liu, Y., Scott, J. F. & Dkhil, B. Direct and indirect measurements on electrocaloric effect: Recent developments and perspectives. Applied Physics Reviews 3, 031102 (2016). | pl_PL |
dc.references | Kutnjak, Z. & Rožič, B. Indirect and Direct Measurements of the Electrocaloric Effect. In Correia, T. & Zhang, Q. (eds.) Electrocaloric Materials 147–182 (Springer Berlin Heidelberg, 2014). | pl_PL |
dc.references | Shi, Y. et al. A scaling law for distinct electrocaloric cooling performance in low-dimensional organic, relaxor and anti-ferroelectrics. Scientific Reports 7, 11111 (2017). | pl_PL |
dc.references | Wang, F. et al. Inhomogeneous electric-field–induced negative/positive electrocaloric effects in ferroelectric nanoparticles. EPL 117, 57002 (2017). | pl_PL |
dc.references | Liu, M. & Wang, J. Giant electrocaloric effect in ferroelectric nanotubes near room temperature. Scientific Reports 5, srep07728 (2015). | pl_PL |
dc.references | Herchig, R., Chang, C.-M., Mani, B. K. & Ponomareva, I. Electrocaloric effect in ferroelectric nanowires from atomistic simulations. Scientific Reports 5, srep17294 (2015). | pl_PL |
dc.references | Ma, Y.-B., Albe, K. & Xu, B.-X. Lattice-based Monte Carlo simulations of the electrocaloric effect in ferroelectrics and relaxor ferroelectrics. Physical Review B 91, 184108 (2015). | pl_PL |
dc.references | Beckman, S. P., Wan, L. F., Barr, J. A. & Nishimatsu, T. Effective Hamiltonian methods for predicting the electrocaloric behavior of BaTiO33. Materials Letters 89, 254–257 (2012). | pl_PL |
dc.references | Rose, M. C. & Cohen, R. E. Giant Electrocaloric Effect Around T c . Physical Review Letters 109, 187604 (2012). | pl_PL |
dc.references | Ponomareva, I. & Lisenkov, S. Bridging the Macroscopic and Atomistic Descriptions of the Electrocaloric Effect. Physical Review Letters 108, 167604 (2012). | pl_PL |
dc.references | Zhang, J., Heitmann, A. A., Alpay, S. P. & Rossetti, G. A. Jr. Aspects of the Electrocaloric Behavior of Ferroelectric Thin Films: A Review of the Predictions of the Landau-Ginzburg Theory. Integrated Ferroelectrics 125, 168–175 (2011). | pl_PL |
dc.references | Lisenkov, S. & Ponomareva, I. Intrinsic electrocaloric effect in ferroelectric alloys from atomistic simulations. Physical Review B 80, 140102 (2009). | pl_PL |
dc.references | Prosandeev, S., Ponomareva, I. & Bellaiche, L. Electrocaloric effect in bulk and low-dimensional ferroelectrics from first principles. Physical Review B 78, 052103 (2008). | pl_PL |
dc.references | Moya, X. et al. Giant Electrocaloric Strength in Single-Crystal BaTiO3. Advanced Materials 25, 1360–1365 (2013). | pl_PL |
dc.references | Novak, N., Pirc, R. & Kutnjak, Z. Impact of critical point on piezoelectric and electrocaloric response in barium titanate. Physical Review B 87, 104102 (2013). | pl_PL |
dc.references | Jiang, Z. et al. Electrocaloric effects in the lead-free Ba(Zr,Ti)O3 relaxor ferroelectric from atomistic simulations. Physical Review B 96, 014114 (2017). | pl_PL |
dc.references | Lu, B. et al. Large Electrocaloric Effect in Relaxor Ferroelectric and Antiferroelectric Lanthanum Doped Lead Zirconate Titanate Ceramics. Scientific Reports 7, 45335 (2017). | pl_PL |
dc.references | Suchaneck, G. & Gerlach, G. Electrocaloric cooling based on relaxor ferroelectrics. Phase Transitions 88, 333–341 (2015). | pl_PL |
dc.references | Pirc, R., Kutnjak, Z., Blinc, R. & Zhang, Q. M. Electrocaloric effect in relaxor ferroelectrics. Journal of Applied Physics 110, 074113 (2011). | pl_PL |
dc.references | Dunne, L. J., Valant, M., Axelsson, A.-K., Manos, G. & Alford, N. M. Statistical mechanical lattice model of the dual-peak electrocaloric effect in ferroelectric relaxors and the role of pressure. Journal of Physics D: Applied Physics 44, 375404 (2011). | pl_PL |
dc.references | Li, X., Lu, S.-G., Qian, X., Lin, M. & Zhang, Q. M. Electrocaloric Polymers. In Electrocaloric Materials 107–124 (Springer, Berlin, Heidelberg, 2014). | pl_PL |
dc.references | Lisenkov, S., Mani, B. K., Glazkova, E., Miller, C. W. & Ponomareva, I. Scaling law for electrocaloric temperature change in antiferroelectrics. Scientific Reports 6, 19590 (2016). | pl_PL |
dc.references | Pirc, R., Rožič, B., Koruza, J., Malič, B. & Kutnjak, Z. Negative electrocaloric effect in antiferroelectric PbZrO3. EPL 107, 17002 (2014). | pl_PL |
dc.references | Goupil, F. L. et al. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics. Scientific Reports 6, srep28251 (2016). | pl_PL |
dc.references | Tasaki, H. The Hubbard model - an introduction and selected rigorous results. Journal of Physics: Condensed Matter 10, 4353 (1998). | pl_PL |
dc.references | Rycerz, A. Pairwise entanglement and the Mott transition for correlated electrons in nanochains. New Journal of Physics 19, 053025 (2017). | pl_PL |
dc.references | Souza, T. X. R. & Macedo, C. A. Ferromagnetic Ground States in Face-Centered Cubic Hubbard Clusters. PLOS ONE 11, e0161549 (2016). | pl_PL |
dc.references | Alfonsi, J., Lanzani, G. & Meneghetti, M. Exact diagonalization of Hubbard models for the optical properties of single-wall carbon nanotubes. New Journal of Physics 12, 083009 (2010). | pl_PL |
dc.references | Schumann, R. & Zwicker, D. The Hubbard model extended by nearest-neighbor Coulomb and exchange interaction on a cubic cluster – rigorous and exact results. Annalen der Physik 522, 419–439 (2010). | pl_PL |
dc.references | López-Urías, F. & Pastor, G. M. Exact numerical study of the ground-state magnetic properties of clusters. Physical Review B 59, 5223–5232 (1999). | pl_PL |
dc.references | Pastor, G. M., Hirsch, R. & Mühlschlegel, B. Magnetism and structure of small clusters: An exact treatment of electron correlations. Physical Review B 53, 10382–10396 (1996). | pl_PL |
dc.references | Pastor, G. M., Hirsch, R. & Mühlschlegel, B. Electron correlations, magnetism, and structure of small clusters. Physical Review Letters 72, 3879–3882 (1994). | pl_PL |
dc.references | Callaway, J., Chen, D. P., Kanhere, D. G. & Li, Q. Small-cluster calculations for the simple and extended Hubbard models. Physical Review B 42, 465–474 (1990). | pl_PL |
dc.references | Parola, A., Sorella, S., Baroni, S., Parrinello, M. & Tosatti, E. Static properties of the 2D Hubbard model on a 4 × 4 cluster. International Journal of Modern Physics B 03, 1865–1873 (1989). | pl_PL |
dc.references | Callaway, J., Chen, D. P. & Tang, R. Ground-state and thermodynamic properties of the Hubbard model applied to small clusters. Physical Review B 35, 3705–3714 (1987). | pl_PL |
dc.references | Callaway, J., Chen, D. P. & Zhang, Y. Hubbard model for a cubic cluster. Physical Review B 36, 2084–2091 (1987). | pl_PL |
dc.references | Falicov, L. M. & Victora, R. H. Exact solution of the Hubbard model for a four-center tetrahedral cluster. Physical Review B 30, 1695–1699 (1984). | pl_PL |
dc.references | Spałek, J., Oleś, A. M. & Chao, K. A. Thermodynamic properties of a two-site Hubbard model with orbital degeneracy. Physica A 97, 552–564 (1979). | pl_PL |
dc.references | Oleś, A. M., Spałek, J. & Chao, K. A. Thermodynamic properties of small extended Hubbard rings. Physica A 97, 565–576 (1979). | pl_PL |
dc.references | Luo, K. & Sheng, W. Bias voltage control of magnetic phase transitions in graphene nanojunctions. Nanotechnology 26, 345203 (2015). | pl_PL |
dc.references | Szałowski, K. Graphene nanoflakes in external electric and magnetic in-plane fields. Journal of Magnetism and Magnetic Materials 382, 318–327 (2015). | pl_PL |
dc.references | Karl’ová, K., Strečka, J. & Richter, J. Enhanced magnetocaloric effect in the proximity of magnetization steps and jumps of spin-1/2 XXZ Heisenberg regular polyhedra. Journal of Physics: Condensed Matter 29, 125802 (2017). | pl_PL |
dc.references | Karl’ová, K. & Strečka, J. Magnetization Process and Magnetocaloric Effect of the Spin-1/2 XXZ Heisenberg Cuboctahedron. Journal of Low Temperature Physics 187, 727–733 (2017). | pl_PL |
dc.references | Strečka, J., Karl’ová, K. & Madaras, T. Giant magnetocaloric effect, magnetization plateaux and jumps of the regular Ising polyhedra. Physica B 466, 76–85 (2015). | pl_PL |
dc.references | Žukovič, M. Thermodynamic and magnetocaloric properties of geometrically frustrated Ising nanoclusters. Journal of Magnetism and Magnetic Materials 374, 22–35 (2015). | pl_PL |
dc.references | Schnack, J. & Heesing, C. Application of the finite-temperature Lanczos method for the evaluation of magnetocaloric properties of large magnetic molecules. The European Physical Journal B 86, 46 (2013). | pl_PL |
dc.references | Zhao, J., Yang, J. & Hou, J. G. Theoretical study of small two-dimensional gold clusters. Physical Review B 67, 085404 (2003). | pl_PL |
dc.references | Bai, Y., Ding, K., Zheng, G.-P., Shi, S.-Q. & Qiao, L. Entropy-change measurement of electrocaloric effect of BaTiO3 single crystal. Phys. Status Solidi A 209, 941–944 (2012). | pl_PL |
dc.references | Fernando, G. W., Palandage, K., Kocharian, A. N. & Davenport, J. W. Pairing in bipartite and nonbipartite repulsive Hubbard clusters: Octahedron. Physical Review B 80, 014525 (2009). | pl_PL |
dc.references | Kocharian, A. N., Fernando, G. W., Palandage, K. & Davenport, J. W. Coherent and incoherent pairing instabilities and spin-charge separation in bipartite and nonbipartite nanoclusters: Exact results. Physical Review B 78, 075431 (2008). | pl_PL |
dc.references | Chowdhury, J., Karmakar, S. N. & Bhattacharyya, B. Effect of external electric field on the charge density waves in one-dimensional Hubbard superlattices. Journal of Physics: Condensed Matter 21, 015302 (2009). | pl_PL |
dc.references | Dutta, S. & Pati, S. K. External electric field mediated quantum phase transitions in one-dimensional charge-ordered insulators: a density matrix renormalization group study. Journal of Physics: Condensed Matter 20, 075226 (2008). | pl_PL |
dc.references | Spałek, J., Podsiadły, R., Wójcik, W. & Rycerz, A. Optimization of single-particle basis for exactly soluble models of correlated electrons. Physical Review B 61, 15676–15687 (2000). | pl_PL |
dc.references | Ursic, H. et al. A multicaloric material as a link between electrocaloric and magnetocaloric refrigeration. Scientific Reports 6, 26629 (2016). | pl_PL |
dc.references | Weiϐe, A. & Fehske, H. Exact Diagonalization Techniques. In Computational Many-Particle Physics 529–544 (Springer, Berlin, Heidelberg, 2008). | pl_PL |
dc.references | Wolfram, S. Wolfram Mathematica (Version 8.0.4). Wolfram Research, Inc., Champaign, Illinois, USA. www.wolfram.com/ (2010). | pl_PL |
dc.identifier.doi | doi.org/10.1038/s41598-018-23443-x | |
dc.discipline | nauki fizyczne | pl_PL |