Pokaż uproszczony rekord

dc.contributor.authorBalcerzak, Tadeusz
dc.contributor.authorSzałowski, Karol
dc.date.accessioned2021-08-24T09:11:46Z
dc.date.available2021-08-24T09:11:46Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/11089/38825
dc.description.abstractIn the paper a computational study of the electrocaloric efect is presented for a cubic nanocluster consisting of 8 sites. The system of interest is described by means of an extended Hubbard model in external electric feld at half flling of the energy levels. The thermodynamic description is obtained within canonical ensemble formalism on the basis of exact numerical diagonalization of the system Hamiltonian. In particular, the entropy and the specifc heat are determined as a function of temperature and external electric feld. The electrocaloric efect is described quantitatively by isothermal entropy change. The behaviour of this quantity is thoroughly analysed as a function of extended Hubbard model parameters, temperature and electric feld variation magnitude. The existence of direct and inverse electrocaloric efect is predicted for some range of model parameters. A high sensitivity to Hubbard model parameters is shown, what paves the way towards controlling and tuning the efect. A non-linear, quadratic dependence of isothermal entropy change on electric feld variation magnitude is demonstrated. The potential for applications of electrocaloric efect in strongly correlated nanoclusters is shown.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Naturepl_PL
dc.relation.ispartofseriesScientific Reports;8
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectelectrocaloric efectpl_PL
dc.subjectcubic Hubbard nanoclusterspl_PL
dc.titleElectrocaloric effect in cubic Hubbard nanoclusterspl_PL
dc.typeArticlepl_PL
dc.page.number1-10pl_PL
dc.contributor.authorAffiliationDepartment of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, ulica Pomorska 149/153, PL90-236, Łódź, Polandpl_PL
dc.identifier.eissn2045-2322
dc.referencesCrossley, S., Mathur, N. D. & Moya, X. New developments in caloric materials for cooling applications. AIP Advances 5, 067153 (2015).pl_PL
dc.referencesTakeuchi, I. & Sandeman, K. Solid-state cooling with caloric materials. Physics Today 68, 48 (2015).pl_PL
dc.referencesMañosa, L., Planes, A. & Acet, M. Advanced materials for solid-state refrigeration. Journal of Materials Chemistry A 1, 4925–4936 (2013).pl_PL
dc.referencesTishin, A. M. & Spichkin, Y. I. The Magnetocaloric Effect and its Applications (CRC Press, 2016).pl_PL
dc.referencesFranco, V., Blázquez, J. S., Ingale, B. & Conde, A. The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models. Annual Review of Materials Research 42, 305–342 (2012).pl_PL
dc.referencesCorreia, T. & Zhang, Q. Electrocaloric Effect: An Introduction. In Correia, T. & Zhang, Q. (eds.) Electrocaloric Materials 1–15 (Springer Berlin Heidelberg, 2014).pl_PL
dc.referencesKutnjak, Z., Rožič, B., Pirc, R. & Webster, J. G. Electrocaloric Effect: Theory, Measurements, and Applications. In Wiley Encyclopedia of Electrical and Electronics Engineering (John Wiley & Sons, Inc., 1999).pl_PL
dc.referencesPlaznik, U. et al. Electrocaloric cooling: The importance of electric-energy recovery and heat regeneration. EPL 111, 57009 (2015).pl_PL
dc.referencesOžbolt, M., Kitanovski, A., Tušek, J. & Poredoš, A. Electrocaloric refrigeration: Thermodynamics, state of the art and future perspectives. International Journal of Refrigeration 40, 174–188 (2014).pl_PL
dc.referencesValant, M. Electrocaloric materials for future solid-state refrigeration technologies. Progress in Materials Science 57, 980–1009 (2012).pl_PL
dc.referencesScott, J. F. Electrocaloric Materials. Annual Review of Materials Research 41, 229–240 (2011).pl_PL
dc.referencesLiu, Y., Scott, J. F. & Dkhil, B. Direct and indirect measurements on electrocaloric effect: Recent developments and perspectives. Applied Physics Reviews 3, 031102 (2016).pl_PL
dc.referencesKutnjak, Z. & Rožič, B. Indirect and Direct Measurements of the Electrocaloric Effect. In Correia, T. & Zhang, Q. (eds.) Electrocaloric Materials 147–182 (Springer Berlin Heidelberg, 2014).pl_PL
dc.referencesShi, Y. et al. A scaling law for distinct electrocaloric cooling performance in low-dimensional organic, relaxor and anti-ferroelectrics. Scientific Reports 7, 11111 (2017).pl_PL
dc.referencesWang, F. et al. Inhomogeneous electric-field–induced negative/positive electrocaloric effects in ferroelectric nanoparticles. EPL 117, 57002 (2017).pl_PL
dc.referencesLiu, M. & Wang, J. Giant electrocaloric effect in ferroelectric nanotubes near room temperature. Scientific Reports 5, srep07728 (2015).pl_PL
dc.referencesHerchig, R., Chang, C.-M., Mani, B. K. & Ponomareva, I. Electrocaloric effect in ferroelectric nanowires from atomistic simulations. Scientific Reports 5, srep17294 (2015).pl_PL
dc.referencesMa, Y.-B., Albe, K. & Xu, B.-X. Lattice-based Monte Carlo simulations of the electrocaloric effect in ferroelectrics and relaxor ferroelectrics. Physical Review B 91, 184108 (2015).pl_PL
dc.referencesBeckman, S. P., Wan, L. F., Barr, J. A. & Nishimatsu, T. Effective Hamiltonian methods for predicting the electrocaloric behavior of BaTiO33. Materials Letters 89, 254–257 (2012).pl_PL
dc.referencesRose, M. C. & Cohen, R. E. Giant Electrocaloric Effect Around T c . Physical Review Letters 109, 187604 (2012).pl_PL
dc.referencesPonomareva, I. & Lisenkov, S. Bridging the Macroscopic and Atomistic Descriptions of the Electrocaloric Effect. Physical Review Letters 108, 167604 (2012).pl_PL
dc.referencesZhang, J., Heitmann, A. A., Alpay, S. P. & Rossetti, G. A. Jr. Aspects of the Electrocaloric Behavior of Ferroelectric Thin Films: A Review of the Predictions of the Landau-Ginzburg Theory. Integrated Ferroelectrics 125, 168–175 (2011).pl_PL
dc.referencesLisenkov, S. & Ponomareva, I. Intrinsic electrocaloric effect in ferroelectric alloys from atomistic simulations. Physical Review B 80, 140102 (2009).pl_PL
dc.referencesProsandeev, S., Ponomareva, I. & Bellaiche, L. Electrocaloric effect in bulk and low-dimensional ferroelectrics from first principles. Physical Review B 78, 052103 (2008).pl_PL
dc.referencesMoya, X. et al. Giant Electrocaloric Strength in Single-Crystal BaTiO3. Advanced Materials 25, 1360–1365 (2013).pl_PL
dc.referencesNovak, N., Pirc, R. & Kutnjak, Z. Impact of critical point on piezoelectric and electrocaloric response in barium titanate. Physical Review B 87, 104102 (2013).pl_PL
dc.referencesJiang, Z. et al. Electrocaloric effects in the lead-free Ba(Zr,Ti)O3 relaxor ferroelectric from atomistic simulations. Physical Review B 96, 014114 (2017).pl_PL
dc.referencesLu, B. et al. Large Electrocaloric Effect in Relaxor Ferroelectric and Antiferroelectric Lanthanum Doped Lead Zirconate Titanate Ceramics. Scientific Reports 7, 45335 (2017).pl_PL
dc.referencesSuchaneck, G. & Gerlach, G. Electrocaloric cooling based on relaxor ferroelectrics. Phase Transitions 88, 333–341 (2015).pl_PL
dc.referencesPirc, R., Kutnjak, Z., Blinc, R. & Zhang, Q. M. Electrocaloric effect in relaxor ferroelectrics. Journal of Applied Physics 110, 074113 (2011).pl_PL
dc.referencesDunne, L. J., Valant, M., Axelsson, A.-K., Manos, G. & Alford, N. M. Statistical mechanical lattice model of the dual-peak electrocaloric effect in ferroelectric relaxors and the role of pressure. Journal of Physics D: Applied Physics 44, 375404 (2011).pl_PL
dc.referencesLi, X., Lu, S.-G., Qian, X., Lin, M. & Zhang, Q. M. Electrocaloric Polymers. In Electrocaloric Materials 107–124 (Springer, Berlin, Heidelberg, 2014).pl_PL
dc.referencesLisenkov, S., Mani, B. K., Glazkova, E., Miller, C. W. & Ponomareva, I. Scaling law for electrocaloric temperature change in antiferroelectrics. Scientific Reports 6, 19590 (2016).pl_PL
dc.referencesPirc, R., Rožič, B., Koruza, J., Malič, B. & Kutnjak, Z. Negative electrocaloric effect in antiferroelectric PbZrO3. EPL 107, 17002 (2014).pl_PL
dc.referencesGoupil, F. L. et al. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics. Scientific Reports 6, srep28251 (2016).pl_PL
dc.referencesTasaki, H. The Hubbard model - an introduction and selected rigorous results. Journal of Physics: Condensed Matter 10, 4353 (1998).pl_PL
dc.referencesRycerz, A. Pairwise entanglement and the Mott transition for correlated electrons in nanochains. New Journal of Physics 19, 053025 (2017).pl_PL
dc.referencesSouza, T. X. R. & Macedo, C. A. Ferromagnetic Ground States in Face-Centered Cubic Hubbard Clusters. PLOS ONE 11, e0161549 (2016).pl_PL
dc.referencesAlfonsi, J., Lanzani, G. & Meneghetti, M. Exact diagonalization of Hubbard models for the optical properties of single-wall carbon nanotubes. New Journal of Physics 12, 083009 (2010).pl_PL
dc.referencesSchumann, R. & Zwicker, D. The Hubbard model extended by nearest-neighbor Coulomb and exchange interaction on a cubic cluster – rigorous and exact results. Annalen der Physik 522, 419–439 (2010).pl_PL
dc.referencesLópez-Urías, F. & Pastor, G. M. Exact numerical study of the ground-state magnetic properties of clusters. Physical Review B 59, 5223–5232 (1999).pl_PL
dc.referencesPastor, G. M., Hirsch, R. & Mühlschlegel, B. Magnetism and structure of small clusters: An exact treatment of electron correlations. Physical Review B 53, 10382–10396 (1996).pl_PL
dc.referencesPastor, G. M., Hirsch, R. & Mühlschlegel, B. Electron correlations, magnetism, and structure of small clusters. Physical Review Letters 72, 3879–3882 (1994).pl_PL
dc.referencesCallaway, J., Chen, D. P., Kanhere, D. G. & Li, Q. Small-cluster calculations for the simple and extended Hubbard models. Physical Review B 42, 465–474 (1990).pl_PL
dc.referencesParola, A., Sorella, S., Baroni, S., Parrinello, M. & Tosatti, E. Static properties of the 2D Hubbard model on a 4 × 4 cluster. International Journal of Modern Physics B 03, 1865–1873 (1989).pl_PL
dc.referencesCallaway, J., Chen, D. P. & Tang, R. Ground-state and thermodynamic properties of the Hubbard model applied to small clusters. Physical Review B 35, 3705–3714 (1987).pl_PL
dc.referencesCallaway, J., Chen, D. P. & Zhang, Y. Hubbard model for a cubic cluster. Physical Review B 36, 2084–2091 (1987).pl_PL
dc.referencesFalicov, L. M. & Victora, R. H. Exact solution of the Hubbard model for a four-center tetrahedral cluster. Physical Review B 30, 1695–1699 (1984).pl_PL
dc.referencesSpałek, J., Oleś, A. M. & Chao, K. A. Thermodynamic properties of a two-site Hubbard model with orbital degeneracy. Physica A 97, 552–564 (1979).pl_PL
dc.referencesOleś, A. M., Spałek, J. & Chao, K. A. Thermodynamic properties of small extended Hubbard rings. Physica A 97, 565–576 (1979).pl_PL
dc.referencesLuo, K. & Sheng, W. Bias voltage control of magnetic phase transitions in graphene nanojunctions. Nanotechnology 26, 345203 (2015).pl_PL
dc.referencesSzałowski, K. Graphene nanoflakes in external electric and magnetic in-plane fields. Journal of Magnetism and Magnetic Materials 382, 318–327 (2015).pl_PL
dc.referencesKarl’ová, K., Strečka, J. & Richter, J. Enhanced magnetocaloric effect in the proximity of magnetization steps and jumps of spin-1/2 XXZ Heisenberg regular polyhedra. Journal of Physics: Condensed Matter 29, 125802 (2017).pl_PL
dc.referencesKarl’ová, K. & Strečka, J. Magnetization Process and Magnetocaloric Effect of the Spin-1/2 XXZ Heisenberg Cuboctahedron. Journal of Low Temperature Physics 187, 727–733 (2017).pl_PL
dc.referencesStrečka, J., Karl’ová, K. & Madaras, T. Giant magnetocaloric effect, magnetization plateaux and jumps of the regular Ising polyhedra. Physica B 466, 76–85 (2015).pl_PL
dc.referencesŽukovič, M. Thermodynamic and magnetocaloric properties of geometrically frustrated Ising nanoclusters. Journal of Magnetism and Magnetic Materials 374, 22–35 (2015).pl_PL
dc.referencesSchnack, J. & Heesing, C. Application of the finite-temperature Lanczos method for the evaluation of magnetocaloric properties of large magnetic molecules. The European Physical Journal B 86, 46 (2013).pl_PL
dc.referencesZhao, J., Yang, J. & Hou, J. G. Theoretical study of small two-dimensional gold clusters. Physical Review B 67, 085404 (2003).pl_PL
dc.referencesBai, Y., Ding, K., Zheng, G.-P., Shi, S.-Q. & Qiao, L. Entropy-change measurement of electrocaloric effect of BaTiO3 single crystal. Phys. Status Solidi A 209, 941–944 (2012).pl_PL
dc.referencesFernando, G. W., Palandage, K., Kocharian, A. N. & Davenport, J. W. Pairing in bipartite and nonbipartite repulsive Hubbard clusters: Octahedron. Physical Review B 80, 014525 (2009).pl_PL
dc.referencesKocharian, A. N., Fernando, G. W., Palandage, K. & Davenport, J. W. Coherent and incoherent pairing instabilities and spin-charge separation in bipartite and nonbipartite nanoclusters: Exact results. Physical Review B 78, 075431 (2008).pl_PL
dc.referencesChowdhury, J., Karmakar, S. N. & Bhattacharyya, B. Effect of external electric field on the charge density waves in one-dimensional Hubbard superlattices. Journal of Physics: Condensed Matter 21, 015302 (2009).pl_PL
dc.referencesDutta, S. & Pati, S. K. External electric field mediated quantum phase transitions in one-dimensional charge-ordered insulators: a density matrix renormalization group study. Journal of Physics: Condensed Matter 20, 075226 (2008).pl_PL
dc.referencesSpałek, J., Podsiadły, R., Wójcik, W. & Rycerz, A. Optimization of single-particle basis for exactly soluble models of correlated electrons. Physical Review B 61, 15676–15687 (2000).pl_PL
dc.referencesUrsic, H. et al. A multicaloric material as a link between electrocaloric and magnetocaloric refrigeration. Scientific Reports 6, 26629 (2016).pl_PL
dc.referencesWeiϐe, A. & Fehske, H. Exact Diagonalization Techniques. In Computational Many-Particle Physics 529–544 (Springer, Berlin, Heidelberg, 2008).pl_PL
dc.referencesWolfram, S. Wolfram Mathematica (Version 8.0.4). Wolfram Research, Inc., Champaign, Illinois, USA. www.wolfram.com/ (2010).pl_PL
dc.identifier.doidoi.org/10.1038/s41598-018-23443-x
dc.disciplinenauki fizycznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe