Pokaż uproszczony rekord

dc.contributor.authorŁomzik, Michał
dc.contributor.authorHanif, Muhammad
dc.contributor.authorBudniok, Aleksandra
dc.contributor.authorBlauz, Andrzej
dc.contributor.authorMakal, Anna
dc.contributor.authorTchoń, Daniel M.
dc.contributor.authorLeśniewska, Barbara
dc.contributor.authorTong, Kelvin K. H.
dc.contributor.authorMovassaghi, Sanam
dc.contributor.authorSöhnel, Tilo
dc.contributor.authorJamieson, Stephen M. F.
dc.contributor.authorZafar, Ayesha
dc.contributor.authorReynisson, Jóhannes
dc.contributor.authorRychlik, Błażej
dc.date.accessioned2021-08-24T07:24:34Z
dc.date.available2021-08-24T07:24:34Z
dc.date.issued2020
dc.identifier.issn0020-1669
dc.identifier.urihttp://hdl.handle.net/11089/38809
dc.description.abstractIspinesib is a potent inhibitor of kinesin spindle protein (KSP), which has been identified as a promising target for antimitotic anticancer drugs. Herein, we report the synthesis of half-sandwich complexes of Ru, Os, Rh, and Ir bearing the ispinesib-derived N,N-bidentate ligands (R)- and (S)-2-(1-amino-2-methylpropyl)-3-benzyl-7-chloroquinazolin-4(3H)-one and studies on their chemical and biological properties. Using the enantiomerically pure (R)- and (S)-forms of the ligand, depending on the organometallic moiety, either the SM,R or RM,S diastereomers, respectively, were observed in the molecular structures of the Ru- and Os(cym) (cym = η6-p-cymene) compounds, whereas the RM,R or SM,S diastereomers were found for the Rh- and Ir(Cp*) (Cp* = η5-pentamethylcyclopentadienyl) derivatives. However, density functional theory (DFT) calculations suggest that the energy difference between the diastereomers is very small, and therefore a mixture of both will be present in solution. The organometallics exhibited varying antiproliferative activity in a series of human cancer cell lines, with the complexes featuring the (R)-enantiomer of the ligand being more potent than the (S)-configured counterparts. Notably, the Rh and Ir complexes demonstrated high KSP inhibitory activity, even at 1 nM concentration, which was independent of the chirality of the ligand, whereas the Ru and especially the Os derivatives were much less active.pl_PL
dc.language.isoenpl_PL
dc.publisherAmerican Chemical Societypl_PL
dc.relation.ispartofseriesInorganic Chemistry;59
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectmetalspl_PL
dc.subjectligandspl_PL
dc.subjectmolecular structurepl_PL
dc.subjecttransition metalspl_PL
dc.subjectnuclear magnetic resonance spectroscopypl_PL
dc.titleMetal-Dependent Cytotoxic and Kinesin Spindle Protein Inhibitory Activity of Ru, Os, Rh, and Ir Half-Sandwich Complexes of IspinesibDerived Ligandspl_PL
dc.typeArticlepl_PL
dc.contributor.authorAffiliationDepartment of Organic Chemistry, Faculty of Chemistry, University of Łódź, ul. Tamka 12, 91-403 Łódź, Polandpl_PL
dc.contributor.authorAffiliationSchool of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealandpl_PL
dc.contributor.authorAffiliationCytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236 Łódź, Polandpl_PL
dc.contributor.authorAffiliationCytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236 Łódź, Polandpl_PL
dc.contributor.authorAffiliationFaculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland;pl_PL
dc.contributor.authorAffiliationFaculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Polandpl_PL
dc.contributor.authorAffiliationFaculty of Chemistry, University of Białystok, ul. K. Ciołkowskiego 1 K, 15-245 Białystok, Polandpl_PL
dc.contributor.authorAffiliationSchool of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealandpl_PL
dc.contributor.authorAffiliationSchool of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealandpl_PL
dc.contributor.authorAffiliationSchool of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealandpl_PL
dc.contributor.authorAffiliationAuckland Cancer Society Research Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;pl_PL
dc.contributor.authorAffiliationSchool of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealandpl_PL
dc.contributor.authorAffiliationSchool of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, United Kingdompl_PL
dc.contributor.authorAffiliationCytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236 Łódź, Poland;pl_PL
dc.identifier.eissn1520-510X
dc.referencesBehera, M.; Owonikoko, T. K.; Kim, S.; Chen, Z.; Higgins, K.; Ramalingam, S. S.; Shin, D. M.; Khuri, F. R.; Beitler, J. J.; Saba, N. F. Concurrent therapy with taxane versus non-taxane containing regimens in locally advanced squamous cell carcinomas of the head and neck (SCCHN): a systematic review. Oral Oncol. 2014, 50 (9), 888– 94, DOI: 10.1016/j.oraloncology.2014.06.014pl_PL
dc.referencesCrown, J.; O’Leary, M. The taxanes: an update. Lancet 2000, 355 (9210), 1176– 8, DOI: 10.1016/S0140-6736(00)02074-2pl_PL
dc.referencesMcGrogan, B. T.; Gilmartin, B.; Carney, D. N.; McCann, A. Taxanes, microtubules and chemoresistant breast cancer. Biochim. Biophys. Acta, Rev. Cancer 2008, 1785 (2), 96– 132, DOI: 10.1016/j.bbcan.2007.10.004pl_PL
dc.referencesShi, J.; Gao, P.; Song, Y.; Chen, X.; Li, Y.; Zhang, C.; Wang, H.; Wang, Z. Efficacy and safety of taxane-based systemic chemotherapy of advanced gastric cancer: A systematic review and meta-analysis. Sci. Rep. 2017, 7 (1), 5319, DOI: 10.1038/s41598-017-05464-0pl_PL
dc.referencesSocinski, M. A. Update on taxanes in the first-line treatment of advanced non-small-cell lung cancer. Curr. Oncol. 2014, 21 (5), 691– 703, DOI: 10.3747/co.21.1997pl_PL
dc.referencesMoudi, M.; Go, R.; Yien, C. Y.; Nazre, M. Vinca alkaloids. Int. J. Prev. Med. 2013, 4 (11), 1231– 1235pl_PL
dc.referencesLipp, H.-P.; Hartmann, J. T.; Stanley, A., Cytostatic Drugs. In Side Effects of Drugs Annual 28; Aronson, J. K., Ed.; Elsevier, 2005; Vol. 28, pp 538– 551pl_PL
dc.referencesFu, Y.; Li, S.; Zu, Y.; Yang, G.; Yang, Z.; Luo, M.; Jiang, S.; Wink, M.; Efferth, T. Medicinal chemistry of paclitaxel and its analogues. Curr. Med. Chem. 2009, 16 (30), 3966– 85, DOI: 10.2174/092986709789352277pl_PL
dc.referencesHayashi, Y.; Takeno, H.; Chinen, T.; Muguruma, K.; Okuyama, K.; Taguchi, A.; Takayama, K.; Yakushiji, F.; Miura, M.; Usui, T.; Hayashi, Y. Development of a new benzophenone-diketopiperazine-type potent antimicrotubule agent possessing a 2-pyridine structure. ACS Med. Chem. Lett. 2014, 5 (10), 1094– 8, DOI: 10.1021/ml5001883pl_PL
dc.referencesNicholson, B.; Lloyd, G. K.; Miller, B. R.; Palladino, M. A.; Kiso, Y.; Hayashi, Y.; Neuteboom, S. T. C. NPI-2358 is a tubulin-depolymerizing agent: In-vitro evidence for activity as a tumor vascular-disrupting agent. Anti-Cancer Drugs 2006, 17 (1), 25– 31, DOI: 10.1097/01.cad.0000182745.01612.8apl_PL
dc.referencesWieczorek, A.; Błauż, A.; Zakrzewski, J.; Rychlik, B.; Plażuk, D. Ferrocenyl 2,5-Piperazinediones as Tubulin-Binding Organometallic ABCB1 and ABCG2 Inhibitors Active against MDR Cells. ACS Med. Chem. Lett. 2016, 7 (6), 612– 7, DOI: 10.1021/acsmedchemlett.6b00046pl_PL
dc.referencesWohl, A. R.; Michel, A. R.; Kalscheuer, S.; Macosko, C. W.; Panyam, J.; Hoye, T. R. Silicate esters of paclitaxel and docetaxel: synthesis, hydrophobicity, hydrolytic stability, cytotoxicity, and prodrug potential. J. Med. Chem. 2014, 57 (6), 2368– 79, DOI: 10.1021/jm401708fpl_PL
dc.referencesWang, Y. F.; Shi, Q. W.; Dong, M.; Kiyota, H.; Gu, Y. C.; Cong, B. Natural taxanes: developments since 1828. Chem. Rev. 2011, 111 (12), 7652– 709, DOI: 10.1021/cr100147pl_PL
dc.referencesTischer, J.; Gergely, F. Anti-mitotic therapies in cancer. J. Cell Biol. 2019, 218 (1), 10– 11, DOI: 10.1083/jcb.201808077pl_PL
dc.referencesPaier, C. R. K.; Maranhão, S. S. A.; Carneiro, T. R.; Lima, L. M.; Rocha, D. D.; Santos, R. d. S.; Farias, K. M. d.; Moraes-Filho, M. O. d.; Pessoa, C. Natural products as new antimitotic compounds for anticancer drug development. Clinics (Sao Paulo) 2018, 73 (suppl 1), e813s DOI: 10.6061/clinics/2018/e813spl_PL
dc.referencesMarzo, I.; Naval, J. Antimitotic drugs in cancer chemotherapy: Promises and pitfalls. Biochem. Pharmacol. 2013, 86 (6), 703– 710, DOI: 10.1016/j.bcp.2013.07.010pl_PL
dc.referencesLiu, Z.; Sun, Q.; Wang, X. PLK1, A Potential Target for Cancer Therapy. Transl. Oncol. 2017, 10 (1), 22– 32, DOI: 10.1016/j.tranon.2016.10.003pl_PL
dc.referencesBavetsias, V.; Linardopoulos, S. Aurora Kinase Inhibitors: Current Status and Outlook. Front. Oncol. 2015, 5, 278, DOI: 10.3389/fonc.2015.00278pl_PL
dc.referencesKeen, N.; Taylor, S. Aurora-kinase inhibitors as anticancer agents. Nat. Rev. Cancer 2004, 4 (12), 927– 36, DOI: 10.1038/nrc1502pl_PL
dc.referencesTang, A.; Gao, K.; Chu, L.; Zhang, R.; Yang, J.; Zheng, J. Aurora kinases: novel therapy targets in cancers. Oncotarget 2017, 8 (14), 23937– 23954, DOI: 10.18632/oncotarget.14893pl_PL
dc.referencesBowles, D. W.; Diamond, J. R.; Lam, E. T.; Weekes, C. D.; Astling, D. P.; Anderson, R. T.; Leong, S.; Gore, L.; Varella-Garcia, M.; Vogler, B. W.; Keysar, S. B.; Freas, E.; Aisner, D. L.; Ren, C.; Tan, A. C.; Wilhelm, F.; Maniar, M.; Eckhardt, S. G.; Messersmith, W. A.; Jimeno, A. Phase I study of oral rigosertib (ON 01910. Na), a dual inhibitor of the PI3K and Plk1 pathways, in adult patients with advanced solid malignancies. Clin. Cancer Res. 2014, 20 (6), 1656– 65, DOI: 10.1158/1078-0432.CCR-13-2506pl_PL
dc.referencesSteegmaier, M.; Hoffmann, M.; Baum, A.; Lenart, P.; Petronczki, M.; Krssak, M.; Gurtler, U.; Garin-Chesa, P.; Lieb, S.; Quant, J.; Grauert, M.; Adolf, G. R.; Kraut, N.; Peters, J. M.; Rettig, W. J. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr. Biol. 2007, 17 (4), 316– 22, DOI: 10.1016/j.cub.2006.12.037pl_PL
dc.referencesMayer, T. U.; Kapoor, T. M.; Haggarty, S. J.; King, R. W.; Schreiber, S. L.; Mitchison, T. J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 1999, 286 (5441), 971– 4, DOI: 10.1126/science.286.5441.971pl_PL
dc.referencesHolen, K.; DiPaola, R.; Liu, G.; Tan, A. R.; Wilding, G.; Hsu, K.; Agrawal, N.; Chen, C.; Xue, L.; Rosenberg, E.; Stein, M. A phase I trial of MK-0731, a kinesin spindle protein (KSP) inhibitor, in patients with solid tumors. Invest. New Drugs 2012, 30 (3), 1088– 95, DOI: 10.1007/s10637-011-9653-1pl_PL
dc.referencesIvachtchenko, A. V.; Kiselyov, A. S.; Tkachenko, S. E.; Ivanenkov, Y. A.; Balakin, K. V. Novel mitotic targets and their small-molecule inhibitors. Curr. Cancer Drug Targets 2007, 7 (8), 766– 784, DOI: 10.2174/156800907783220499pl_PL
dc.referencesMiglarese, M. R.; Carlson, R. O. Development of new cancer therapeutic agents targeting mitosis. Expert Opin. Invest. Drugs 2006, 15 (11), 1411– 25, DOI: 10.1517/13543784.15.11.1411pl_PL
dc.referencesLemieux, C.; DeWolf, W.; Voegtli, W.; Wallace, E.; Woessner, R.; Corrette, C.; Allen, S.; Hans, J.; Zhao, Q.; Aicher, T.; Lyssikatos, J.; Robinson, J.; Koch, K.; Winkler, J.; Gross, S. ARRY-520, a Novel, Highly Selective KSP Inhibitor with Potent Anti-Proliferative Activity. Blood 2006, 108, 4401, DOI: 10.1182/blood.V108.11.4401.4401pl_PL
dc.referencesPurcell, J. W.; Davis, J.; Reddy, M.; Martin, S.; Samayoa, K.; Vo, H.; Thomsen, K.; Bean, P.; Kuo, W. L.; Ziyad, S.; Billig, J.; Feiler, H. S.; Gray, J. W.; Wood, K. W.; Cases, S. Activity of the kinesin spindle protein inhibitor ispinesib (SB-715992) in models of breast cancer. Clin. Cancer Res. 2010, 16 (2), 566– 76, DOI: 10.1158/1078-0432.CCR-09-1498pl_PL
dc.referencesBongero, D.; Paoluzzi, L.; Marchi, E.; Zullo, K. M.; Neisa, R.; Mao, Y.; Escandon, R.; Wood, K.; O’Connor, O. A. The novel kinesin spindle protein (KSP) inhibitor SB-743921 exhibits marked activity in in vivo and in vitro models of aggressive large B-cell lymphoma. Leuk. Lymphoma 2015, 56 (10), 2945– 52, DOI: 10.3109/10428194.2015.1020058pl_PL
dc.referencesJaouen, G.; Salmain, M. Bioorganometallic Chemistry; Wiley-VCH, 2014pl_PL
dc.referencesJaouen, G.; Vessieres, A.; Top, S. Ferrocifen type anti cancer drugs. Chem. Soc. Rev. 2015, 44 (24), 8802– 17, DOI: 10.1039/C5CS00486Apl_PL
dc.referencesRilak Simovic, A.; Masnikosa, R.; Bratsos, I.; Alessio, E. Chemistry and reactivity of ruthenium (II) complexes: DNA/protein binding mode and anticancer activity are related to the complex structure. Coord. Chem. Rev. 2019, 398, 113011, DOI: 10.1016/j.ccr.2019.07.008pl_PL
dc.referencesMeier-Menches, S. M.; Gerner, C.; Berger, W.; Hartinger, C. G.; Keppler, B. K. Structure-activity relationships for ruthenium and osmium anticancer agents - towards clinical development. Chem. Soc. Rev. 2018, 47 (3), 909– 928, DOI: 10.1039/C7CS00332Cpl_PL
dc.referencesHanif, M.; Babak, M. V.; Hartinger, C. G. Development of anticancer agents: wizardry with osmium. Drug Discovery Today 2014, 19 (10), 1640– 8, DOI: 10.1016/j.drudis.2014.06.016pl_PL
dc.referencesGeldmacher, Y.; Oleszak, M.; Sheldrick, W. S. Rhodium(III) and iridium(III) complexes as anticancer agents. Inorg. Chim. Acta 2012, 393, 84– 102, DOI: 10.1016/j.ica.2012.06.046pl_PL
dc.referencesPlażuk, D.; Wieczorek, A.; Błauż, A.; Rychlik, B. Synthesis and biological activities of ferrocenyl derivatives of paclitaxel. MedChemComm 2012, 3 (4), 498– 501, DOI: 10.1039/c2md00315epl_PL
dc.referencesPlażuk, D.; Wieczorek, A.; Ciszewski, W. M.; Kowalczyk, K.; Błauż, A.; Pawlędzio, S.; Makal, A.; Eurtivong, C.; Arabshahi, H. J.; Reynisson, J.; Hartinger, C. G.; Rychlik, B. Synthesis and in vitro Biological Evaluation of Ferrocenyl Side-Chain-Functionalized Paclitaxel Derivatives. ChemMedChem 2017, 12 (22), 1882– 1892, DOI: 10.1002/cmdc.201700576pl_PL
dc.referencesNicolaus, N.; Reball, J.; Velder, J.; Termath, A.; Schmalz, H.-G.; Sitnikov, N.; Yu. Fedorov, A. A Convenient Entry to New C-7-Modified Colchicinoids through Azide Alkyne [3 + 2] Cycloaddition: Application of Ring-Contractive Rearrangements. Heterocycles 2010, 82 (2), 1585– 1600, DOI: 10.3987/COM-10-S(E)117pl_PL
dc.referencesNicolaus, N.; Zapke, J.; Riesterer, P.; Neudorfl, J. M.; Prokop, A.; Oschkinat, H.; Schmalz, H. G. Azides Derived from Colchicine and their Use in Library Synthesis: a Practical Entry to New Bioactive Derivatives of an Old Natural Drug. ChemMedChem 2010, 5 (5), 661– 665, DOI: 10.1002/cmdc.201000063pl_PL
dc.referencesKowalczyk, K.; Błauż, A.; Ciszewski, W. M.; Wieczorek, A.; Rychlik, B.; Plażuk, D. Colchicine metallocenyl bioconjugates showing high antiproliferative activities against cancer cell lines. Dalton Trans. 2017, 46 (48), 17041– 17052,pl_PL
dc.referencesKowalczyk, K.; Błauż, A.; Ciszewski, W. M.; Wieczorek, A.; Rychlik, B.; Plażuk, D. Correction: Colchicine metallocenyl bioconjugates showing high antiproliferative activities against cancer cell lines. Dalton Trans. 2018, 47 (8), 2822, DOI: 10.1039/C8DT90016Gpl_PL
dc.referencesBeauperin, M.; Polat, D.; Roudesly, F.; Top, S.; Vessieres, A.; Oble, J.; Jaouen, G.; Poli, G. Approach to ferrocenyl-podophyllotoxin analogs and their evaluation as anti-tumor agents. J. Organomet. Chem. 2017, 839, 83– 90, DOI: 10.1016/j.jorganchem.2017.02.005pl_PL
dc.referencesWieczorek, A.; Blauz, A.; Makal, A.; Rychlik, B.; Plazuk, D. Synthesis and evaluation of biological properties of ferrocenyl-podophyllotoxin conjugates. Dalton Trans. 2017, 46 (33), 10847– 10858, DOI: 10.1039/C7DT02107Kpl_PL
dc.referencesWieczorek, A.; Błauż, A.; Zal, A.; Arabshahi, H. J.; Reynisson, J.; Hartinger, C. G.; Rychlik, B.; Plażuk, D. Ferrocenyl Paclitaxel and Docetaxel Derivatives: Impact of an Organometallic Moiety on the Mode of Action of Taxanes. Chem. - Eur. J. 2016, 22 (32), 11413– 21, DOI: 10.1002/chem.201601809pl_PL
dc.referencesBennett, M. A.; Smith, A. K. Arene Ruthenium(II) Complexes Formed by Dehydrogenation of Cyclohexadienes with Ruthenium(III) Trichloride. J. Chem. Soc., Dalton Trans. 1974, (2), 233– 241, DOI: 10.1039/dt9740000233pl_PL
dc.referencesKiel, W. A.; Ball, R. G.; Graham, W. A. G. Carbonyl-η-hexamethylbenzene complexes of osmium. Carbon-hydrogen activation by (η-C6Me6)Os(CO)(H)2. J. Organomet. Chem. 1990, 383 (1), 481– 496, DOI: 10.1016/0022-328X(90)85149-Spl_PL
dc.referencesWhite, C.; Yates, A.; Maitlis, P.; Heinekey, D. (η5-Pentamethylcyclopentadienyl) Rhodium and-Iridium Compounds. Inorg. Synt. 2007, 228– 234, DOI: 10.1002/9780470132609.ch53pl_PL
dc.referencesHolland, J. P.; Jones, M. W.; Cohrs, S.; Schibli, R.; Fischer, E. Fluorinated quinazolinones as potential radiotracers for imaging kinesin spindle protein expression. Bioorg. Med. Chem. 2013, 21 (2), 496– 507, DOI: 10.1016/j.bmc.2012.11.013pl_PL
dc.referencesMészáros, J. P.; Dömötör, O.; Hackl, C. M.; Roller, A.; Keppler, B. K.; Kandioller, W.; Enyedy, É. A. Structural and solution equilibrium studies on half-sandwich organorhodium complexes of (N, N) donor bidentate ligands. New J. Chem. 2018, 42 (13), 11174– 11184, DOI: 10.1039/C8NJ01681Jpl_PL
dc.referencesPizarro, A. M.; Habtemariam, A.; Sadler, P. J. Activation mechanisms for organometallic anticancer complexes. In Medicinal Organometallic Chemistry; Springer, 2010; pp 21– 56.pl_PL
dc.referencesBabak, M. V.; Meier, S. M.; Legin, A. A.; Adib Razavi, M. S.; Roller, A.; Jakupec, M. A.; Keppler, B. K.; Hartinger, C. G. Am(m)ines Make the Difference: Organoruthenium Am(m)ine Complexes and Their Chemistry in Anticancer Drug Development. Chem. - Eur. J. 2013, 19 (13), 4308– 4318, DOI: 10.1002/chem.201202657pl_PL
dc.referencesKubanik, M.; Holtkamp, H.; Söhnel, T.; Jamieson, S. M. F.; Hartinger, C. G. Impact of the Halogen Substitution Pattern on the Biological Activity of Organoruthenium 8-Hydroxyquinoline Anticancer Agents. Organometallics 2015, 34 (23), 5658– 5668, DOI: 10.1021/acs.organomet.5b00868pl_PL
dc.referencesKurzwernhart, A.; Kandioller, W.; Enyedy, E. A.; Novak, M.; Jakupec, M. A.; Keppler, B. K.; Hartinger, C. G. 3-Hydroxyflavones vs. 3-hydroxyquinolinones: structure-activity relationships and stability studies on Ru(II)(arene) anticancer complexes with biologically active ligands. Dalton Trans. 2013, 42 (17), 6193– 202, DOI: 10.1039/C2DT32206Dpl_PL
dc.referencesHanif, M.; Meier, S. M.; Kandioller, W.; Bytzek, A.; Hejl, M.; Hartinger, C. G.; Nazarov, A. A.; Arion, V. B.; Jakupec, M. A.; Dyson, P. J.; Keppler, B. K. From hydrolytically labile to hydrolytically stable Ru(II)-arene anticancer complexes with carbohydrate-derived co-ligands. J. Inorg. Biochem. 2011, 105 (2), 224– 31, DOI: 10.1016/j.jinorgbio.2010.10.00pl_PL
dc.referencesEl-Nassan, H. B. Advances in the discovery of kinesin spindle protein (Eg5) inhibitors as antitumor agents. Eur. J. Med. Chem. 2013, 62, 614– 31, DOI: 10.1016/j.ejmech.2013.01.031pl_PL
dc.referencesMatsuno, K.; Sawada, J.; Asai, A. Therapeutic potential of mitotic kinesin inhibitors in cancer. Expert Opin. Ther. Pat. 2008, 18 (3), 253– 274, DOI: 10.1517/13543776.18.3.253pl_PL
dc.referencesCarol, H.; Lock, R.; Houghton, P. J.; Morton, C. L.; Kolb, E. A.; Gorlick, R.; Reynolds, C. P.; Maris, J. M.; Keir, S. T.; Billups, C. A.; Smith, M. A. Initial testing (stage 1) of the kinesin spindle protein inhibitor ispinesib by the pediatric preclinical testing program. Pediatr. Blood Cancer 2009, 53 (7), 1255– 1263, DOI: 10.1002/pbc.22056pl_PL
dc.referencesAl-Masoudi, W. A.; Al-Masoudi, N. A.; Weibert, B.; Winter, R. Synthesis, X-ray structure, in vitro HIV and kinesin Eg5 inhibition activities of new arene ruthenium complexes of pyrimidine analogs. J. Coord. Chem. 2017, 70 (12), 2061– 2073, DOI: 10.1080/00958972.2017.1334259pl_PL
dc.referencesAl-Masoudi, W. A.; Al-Masoudi, N. A. A ruthenium complexes of monastrol and its pyrimidine analogues: Synthesis and biological properties. Phosphorus, Sulfur Silicon Relat. Elem. 2019, 194 (11), 1020– 1027, DOI: 10.1080/10426507.2019.1597362pl_PL
dc.referencesTalapatra, S. K.; Schuttelkopf, A. W.; Kozielski, F. The structure of the ternary Eg5-ADP-ispinesib complex. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2012, 68 (10), 1311– 1319, DOI: 10.1107/S0907444912027965pl_PL
dc.referencesZhang, B.; Liu, J.-F.; Xu, Y.; Ng, S.-C. Crystal structure of HsEg5 in complex with clinical candidate CK0238273 provides insight into inhibitory mechanism, potency, and specificity. Biochem. Biophys. Res. Commun. 2008, 372 (4), 565– 570, DOI: 10.1016/j.bbrc.2008.05.074pl_PL
dc.referencesMyers, S. M.; Collins, I. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy. Future Med. Chem. 2016, 8 (4), 463– 89, DOI: 10.4155/fmc.16.5pl_PL
dc.referencesRashid, U.; Hassan, S. F.; Nazir, S.; Wadood, A.; Waseem, M.; Ansari, F. L. Synthesis, docking studies, and in silico ADMET predictions of some new derivatives of pyrimidine as potential KSP inhibitors. Med. Chem. Res. 2015, 24 (1), 304– 315, DOI: 10.1007/s00044-014-1120-zpl_PL
dc.referencesPark, H. W.; Ma, Z.; Zhu, H.; Jiang, S.; Robinson, R. C.; Endow, S. A. Structural basis of small molecule ATPase inhibition of a human mitotic kinesin motor protein. Sci. Rep. 2017, 7 (1), 15121, DOI: 10.1038/s41598-017-14754-6pl_PL
dc.referenceshai, L.-Q.; Liu, G.; Zhang, Y.-L.; Huang, J.-J.; Tong, J.-F. Synthesis, crystal structure, fluorescence, electrochemical property, and SOD-like activity of an unexpected nickel (II) complex with a quinazoline-type ligand. J. Coord. Chem. 2013, 66 (22), 3926– 3938, DOI: 10.1080/00958972.2013.857016pl_PL
dc.referencesBatinić-Haberle, I.; Rebouças, J. S.; Spasojević, I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid. Redox Signaling 2010, 13 (6), 877– 918, DOI: 10.1089/ars.2009.2876pl_PL
dc.referencesRe, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 1999, 26 (9), 1231– 1237, DOI: 10.1016/S0891-5849(98)00315-3pl_PL
dc.referencesBłauż, A.; Rychlik, B. Drug-selected cell line panels for evaluation of the pharmacokinetic consequences of multidrug resistance proteins. J. Pharmacol. Toxicol. Methods 2017, 84, 57– 65, DOI: 10.1016/j.vascn.2016.11.001pl_PL
dc.referencesCrooke, S. T.; Snyder, R. M.; Butt, T. R.; Ecker, D. J.; Allaudeen, H. S.; Monia, B.; Mirabelli, C. K. Cellular and molecular pharmacology of auranofin and related gold complexes. Biochem. Pharmacol. 1986, 35 (20), 3423– 3431, DOI: 10.1016/0006-2952(86)90608-8pl_PL
dc.referencesIshikawa, T.; Ali-Osman, F. Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance. J. Biol. Chem. 1993, 268 (27), 20116– 20125pl_PL
dc.identifier.doi10.1021/acs.inorgchem.0c00957
dc.disciplinenauki chemicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe