dc.contributor.author | Łomzik, Michał | |
dc.contributor.author | Hanif, Muhammad | |
dc.contributor.author | Budniok, Aleksandra | |
dc.contributor.author | Blauz, Andrzej | |
dc.contributor.author | Makal, Anna | |
dc.contributor.author | Tchoń, Daniel M. | |
dc.contributor.author | Leśniewska, Barbara | |
dc.contributor.author | Tong, Kelvin K. H. | |
dc.contributor.author | Movassaghi, Sanam | |
dc.contributor.author | Söhnel, Tilo | |
dc.contributor.author | Jamieson, Stephen M. F. | |
dc.contributor.author | Zafar, Ayesha | |
dc.contributor.author | Reynisson, Jóhannes | |
dc.contributor.author | Rychlik, Błażej | |
dc.date.accessioned | 2021-08-24T07:24:34Z | |
dc.date.available | 2021-08-24T07:24:34Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0020-1669 | |
dc.identifier.uri | http://hdl.handle.net/11089/38809 | |
dc.description.abstract | Ispinesib is a potent inhibitor of kinesin spindle protein (KSP), which has been identified as a promising target for antimitotic anticancer drugs. Herein, we report the synthesis of half-sandwich complexes of Ru, Os, Rh, and Ir bearing the ispinesib-derived N,N-bidentate ligands (R)- and (S)-2-(1-amino-2-methylpropyl)-3-benzyl-7-chloroquinazolin-4(3H)-one and studies on their chemical and biological properties. Using the enantiomerically pure (R)- and (S)-forms of the ligand, depending on the organometallic moiety, either the SM,R or RM,S diastereomers, respectively, were observed in the molecular structures of the Ru- and Os(cym) (cym = η6-p-cymene) compounds, whereas the RM,R or SM,S diastereomers were found for the Rh- and Ir(Cp*) (Cp* = η5-pentamethylcyclopentadienyl) derivatives. However, density functional theory (DFT) calculations suggest that the energy difference between the diastereomers is very small, and therefore a mixture of both will be present in solution. The organometallics exhibited varying antiproliferative activity in a series of human cancer cell lines, with the complexes featuring the (R)-enantiomer of the ligand being more potent than the (S)-configured counterparts. Notably, the Rh and Ir complexes demonstrated high KSP inhibitory activity, even at 1 nM concentration, which was independent of the chirality of the ligand, whereas the Ru and especially the Os derivatives were much less active. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | American Chemical Society | pl_PL |
dc.relation.ispartofseries | Inorganic Chemistry;59 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | metals | pl_PL |
dc.subject | ligands | pl_PL |
dc.subject | molecular structure | pl_PL |
dc.subject | transition metals | pl_PL |
dc.subject | nuclear magnetic resonance spectroscopy | pl_PL |
dc.title | Metal-Dependent Cytotoxic and Kinesin Spindle Protein Inhibitory Activity of Ru, Os, Rh, and Ir Half-Sandwich Complexes of IspinesibDerived Ligands | pl_PL |
dc.type | Article | pl_PL |
dc.contributor.authorAffiliation | Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, ul. Tamka 12, 91-403 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand | pl_PL |
dc.contributor.authorAffiliation | Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland; | pl_PL |
dc.contributor.authorAffiliation | Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland | pl_PL |
dc.contributor.authorAffiliation | Faculty of Chemistry, University of Białystok, ul. K. Ciołkowskiego 1 K, 15-245 Białystok, Poland | pl_PL |
dc.contributor.authorAffiliation | School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand | pl_PL |
dc.contributor.authorAffiliation | School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand | pl_PL |
dc.contributor.authorAffiliation | School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand | pl_PL |
dc.contributor.authorAffiliation | Auckland Cancer Society Research Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; | pl_PL |
dc.contributor.authorAffiliation | School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand | pl_PL |
dc.contributor.authorAffiliation | School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, United Kingdom | pl_PL |
dc.contributor.authorAffiliation | Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236 Łódź, Poland; | pl_PL |
dc.identifier.eissn | 1520-510X | |
dc.references | Behera, M.; Owonikoko, T. K.; Kim, S.; Chen, Z.; Higgins, K.; Ramalingam, S. S.; Shin, D. M.; Khuri, F. R.; Beitler, J. J.; Saba, N. F. Concurrent therapy with taxane versus non-taxane containing regimens in locally advanced squamous cell carcinomas of the head and neck (SCCHN): a systematic review. Oral Oncol. 2014, 50 (9), 888– 94, DOI: 10.1016/j.oraloncology.2014.06.014 | pl_PL |
dc.references | Crown, J.; O’Leary, M. The taxanes: an update. Lancet 2000, 355 (9210), 1176– 8, DOI: 10.1016/S0140-6736(00)02074-2 | pl_PL |
dc.references | McGrogan, B. T.; Gilmartin, B.; Carney, D. N.; McCann, A. Taxanes, microtubules and chemoresistant breast cancer. Biochim. Biophys. Acta, Rev. Cancer 2008, 1785 (2), 96– 132, DOI: 10.1016/j.bbcan.2007.10.004 | pl_PL |
dc.references | Shi, J.; Gao, P.; Song, Y.; Chen, X.; Li, Y.; Zhang, C.; Wang, H.; Wang, Z. Efficacy and safety of taxane-based systemic chemotherapy of advanced gastric cancer: A systematic review and meta-analysis. Sci. Rep. 2017, 7 (1), 5319, DOI: 10.1038/s41598-017-05464-0 | pl_PL |
dc.references | Socinski, M. A. Update on taxanes in the first-line treatment of advanced non-small-cell lung cancer. Curr. Oncol. 2014, 21 (5), 691– 703, DOI: 10.3747/co.21.1997 | pl_PL |
dc.references | Moudi, M.; Go, R.; Yien, C. Y.; Nazre, M. Vinca alkaloids. Int. J. Prev. Med. 2013, 4 (11), 1231– 1235 | pl_PL |
dc.references | Lipp, H.-P.; Hartmann, J. T.; Stanley, A., Cytostatic Drugs. In Side Effects of Drugs Annual 28; Aronson, J. K., Ed.; Elsevier, 2005; Vol. 28, pp 538– 551 | pl_PL |
dc.references | Fu, Y.; Li, S.; Zu, Y.; Yang, G.; Yang, Z.; Luo, M.; Jiang, S.; Wink, M.; Efferth, T. Medicinal chemistry of paclitaxel and its analogues. Curr. Med. Chem. 2009, 16 (30), 3966– 85, DOI: 10.2174/092986709789352277 | pl_PL |
dc.references | Hayashi, Y.; Takeno, H.; Chinen, T.; Muguruma, K.; Okuyama, K.; Taguchi, A.; Takayama, K.; Yakushiji, F.; Miura, M.; Usui, T.; Hayashi, Y. Development of a new benzophenone-diketopiperazine-type potent antimicrotubule agent possessing a 2-pyridine structure. ACS Med. Chem. Lett. 2014, 5 (10), 1094– 8, DOI: 10.1021/ml5001883 | pl_PL |
dc.references | Nicholson, B.; Lloyd, G. K.; Miller, B. R.; Palladino, M. A.; Kiso, Y.; Hayashi, Y.; Neuteboom, S. T. C. NPI-2358 is a tubulin-depolymerizing agent: In-vitro evidence for activity as a tumor vascular-disrupting agent. Anti-Cancer Drugs 2006, 17 (1), 25– 31, DOI: 10.1097/01.cad.0000182745.01612.8a | pl_PL |
dc.references | Wieczorek, A.; Błauż, A.; Zakrzewski, J.; Rychlik, B.; Plażuk, D. Ferrocenyl 2,5-Piperazinediones as Tubulin-Binding Organometallic ABCB1 and ABCG2 Inhibitors Active against MDR Cells. ACS Med. Chem. Lett. 2016, 7 (6), 612– 7, DOI: 10.1021/acsmedchemlett.6b00046 | pl_PL |
dc.references | Wohl, A. R.; Michel, A. R.; Kalscheuer, S.; Macosko, C. W.; Panyam, J.; Hoye, T. R. Silicate esters of paclitaxel and docetaxel: synthesis, hydrophobicity, hydrolytic stability, cytotoxicity, and prodrug potential. J. Med. Chem. 2014, 57 (6), 2368– 79, DOI: 10.1021/jm401708f | pl_PL |
dc.references | Wang, Y. F.; Shi, Q. W.; Dong, M.; Kiyota, H.; Gu, Y. C.; Cong, B. Natural taxanes: developments since 1828. Chem. Rev. 2011, 111 (12), 7652– 709, DOI: 10.1021/cr100147 | pl_PL |
dc.references | Tischer, J.; Gergely, F. Anti-mitotic therapies in cancer. J. Cell Biol. 2019, 218 (1), 10– 11, DOI: 10.1083/jcb.201808077 | pl_PL |
dc.references | Paier, C. R. K.; Maranhão, S. S. A.; Carneiro, T. R.; Lima, L. M.; Rocha, D. D.; Santos, R. d. S.; Farias, K. M. d.; Moraes-Filho, M. O. d.; Pessoa, C. Natural products as new antimitotic compounds for anticancer drug development. Clinics (Sao Paulo) 2018, 73 (suppl 1), e813s DOI: 10.6061/clinics/2018/e813s | pl_PL |
dc.references | Marzo, I.; Naval, J. Antimitotic drugs in cancer chemotherapy: Promises and pitfalls. Biochem. Pharmacol. 2013, 86 (6), 703– 710, DOI: 10.1016/j.bcp.2013.07.010 | pl_PL |
dc.references | Liu, Z.; Sun, Q.; Wang, X. PLK1, A Potential Target for Cancer Therapy. Transl. Oncol. 2017, 10 (1), 22– 32, DOI: 10.1016/j.tranon.2016.10.003 | pl_PL |
dc.references | Bavetsias, V.; Linardopoulos, S. Aurora Kinase Inhibitors: Current Status and Outlook. Front. Oncol. 2015, 5, 278, DOI: 10.3389/fonc.2015.00278 | pl_PL |
dc.references | Keen, N.; Taylor, S. Aurora-kinase inhibitors as anticancer agents. Nat. Rev. Cancer 2004, 4 (12), 927– 36, DOI: 10.1038/nrc1502 | pl_PL |
dc.references | Tang, A.; Gao, K.; Chu, L.; Zhang, R.; Yang, J.; Zheng, J. Aurora kinases: novel therapy targets in cancers. Oncotarget 2017, 8 (14), 23937– 23954, DOI: 10.18632/oncotarget.14893 | pl_PL |
dc.references | Bowles, D. W.; Diamond, J. R.; Lam, E. T.; Weekes, C. D.; Astling, D. P.; Anderson, R. T.; Leong, S.; Gore, L.; Varella-Garcia, M.; Vogler, B. W.; Keysar, S. B.; Freas, E.; Aisner, D. L.; Ren, C.; Tan, A. C.; Wilhelm, F.; Maniar, M.; Eckhardt, S. G.; Messersmith, W. A.; Jimeno, A. Phase I study of oral rigosertib (ON 01910. Na), a dual inhibitor of the PI3K and Plk1 pathways, in adult patients with advanced solid malignancies. Clin. Cancer Res. 2014, 20 (6), 1656– 65, DOI: 10.1158/1078-0432.CCR-13-2506 | pl_PL |
dc.references | Steegmaier, M.; Hoffmann, M.; Baum, A.; Lenart, P.; Petronczki, M.; Krssak, M.; Gurtler, U.; Garin-Chesa, P.; Lieb, S.; Quant, J.; Grauert, M.; Adolf, G. R.; Kraut, N.; Peters, J. M.; Rettig, W. J. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr. Biol. 2007, 17 (4), 316– 22, DOI: 10.1016/j.cub.2006.12.037 | pl_PL |
dc.references | Mayer, T. U.; Kapoor, T. M.; Haggarty, S. J.; King, R. W.; Schreiber, S. L.; Mitchison, T. J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 1999, 286 (5441), 971– 4, DOI: 10.1126/science.286.5441.971 | pl_PL |
dc.references | Holen, K.; DiPaola, R.; Liu, G.; Tan, A. R.; Wilding, G.; Hsu, K.; Agrawal, N.; Chen, C.; Xue, L.; Rosenberg, E.; Stein, M. A phase I trial of MK-0731, a kinesin spindle protein (KSP) inhibitor, in patients with solid tumors. Invest. New Drugs 2012, 30 (3), 1088– 95, DOI: 10.1007/s10637-011-9653-1 | pl_PL |
dc.references | Ivachtchenko, A. V.; Kiselyov, A. S.; Tkachenko, S. E.; Ivanenkov, Y. A.; Balakin, K. V. Novel mitotic targets and their small-molecule inhibitors. Curr. Cancer Drug Targets 2007, 7 (8), 766– 784, DOI: 10.2174/156800907783220499 | pl_PL |
dc.references | Miglarese, M. R.; Carlson, R. O. Development of new cancer therapeutic agents targeting mitosis. Expert Opin. Invest. Drugs 2006, 15 (11), 1411– 25, DOI: 10.1517/13543784.15.11.1411 | pl_PL |
dc.references | Lemieux, C.; DeWolf, W.; Voegtli, W.; Wallace, E.; Woessner, R.; Corrette, C.; Allen, S.; Hans, J.; Zhao, Q.; Aicher, T.; Lyssikatos, J.; Robinson, J.; Koch, K.; Winkler, J.; Gross, S. ARRY-520, a Novel, Highly Selective KSP Inhibitor with Potent Anti-Proliferative Activity. Blood 2006, 108, 4401, DOI: 10.1182/blood.V108.11.4401.4401 | pl_PL |
dc.references | Purcell, J. W.; Davis, J.; Reddy, M.; Martin, S.; Samayoa, K.; Vo, H.; Thomsen, K.; Bean, P.; Kuo, W. L.; Ziyad, S.; Billig, J.; Feiler, H. S.; Gray, J. W.; Wood, K. W.; Cases, S. Activity of the kinesin spindle protein inhibitor ispinesib (SB-715992) in models of breast cancer. Clin. Cancer Res. 2010, 16 (2), 566– 76, DOI: 10.1158/1078-0432.CCR-09-1498 | pl_PL |
dc.references | Bongero, D.; Paoluzzi, L.; Marchi, E.; Zullo, K. M.; Neisa, R.; Mao, Y.; Escandon, R.; Wood, K.; O’Connor, O. A. The novel kinesin spindle protein (KSP) inhibitor SB-743921 exhibits marked activity in in vivo and in vitro models of aggressive large B-cell lymphoma. Leuk. Lymphoma 2015, 56 (10), 2945– 52, DOI: 10.3109/10428194.2015.1020058 | pl_PL |
dc.references | Jaouen, G.; Salmain, M. Bioorganometallic Chemistry; Wiley-VCH, 2014 | pl_PL |
dc.references | Jaouen, G.; Vessieres, A.; Top, S. Ferrocifen type anti cancer drugs. Chem. Soc. Rev. 2015, 44 (24), 8802– 17, DOI: 10.1039/C5CS00486A | pl_PL |
dc.references | Rilak Simovic, A.; Masnikosa, R.; Bratsos, I.; Alessio, E. Chemistry and reactivity of ruthenium (II) complexes: DNA/protein binding mode and anticancer activity are related to the complex structure. Coord. Chem. Rev. 2019, 398, 113011, DOI: 10.1016/j.ccr.2019.07.008 | pl_PL |
dc.references | Meier-Menches, S. M.; Gerner, C.; Berger, W.; Hartinger, C. G.; Keppler, B. K. Structure-activity relationships for ruthenium and osmium anticancer agents - towards clinical development. Chem. Soc. Rev. 2018, 47 (3), 909– 928, DOI: 10.1039/C7CS00332C | pl_PL |
dc.references | Hanif, M.; Babak, M. V.; Hartinger, C. G. Development of anticancer agents: wizardry with osmium. Drug Discovery Today 2014, 19 (10), 1640– 8, DOI: 10.1016/j.drudis.2014.06.016 | pl_PL |
dc.references | Geldmacher, Y.; Oleszak, M.; Sheldrick, W. S. Rhodium(III) and iridium(III) complexes as anticancer agents. Inorg. Chim. Acta 2012, 393, 84– 102, DOI: 10.1016/j.ica.2012.06.046 | pl_PL |
dc.references | Plażuk, D.; Wieczorek, A.; Błauż, A.; Rychlik, B. Synthesis and biological activities of ferrocenyl derivatives of paclitaxel. MedChemComm 2012, 3 (4), 498– 501, DOI: 10.1039/c2md00315e | pl_PL |
dc.references | Plażuk, D.; Wieczorek, A.; Ciszewski, W. M.; Kowalczyk, K.; Błauż, A.; Pawlędzio, S.; Makal, A.; Eurtivong, C.; Arabshahi, H. J.; Reynisson, J.; Hartinger, C. G.; Rychlik, B. Synthesis and in vitro Biological Evaluation of Ferrocenyl Side-Chain-Functionalized Paclitaxel Derivatives. ChemMedChem 2017, 12 (22), 1882– 1892, DOI: 10.1002/cmdc.201700576 | pl_PL |
dc.references | Nicolaus, N.; Reball, J.; Velder, J.; Termath, A.; Schmalz, H.-G.; Sitnikov, N.; Yu. Fedorov, A. A Convenient Entry to New C-7-Modified Colchicinoids through Azide Alkyne [3 + 2] Cycloaddition: Application of Ring-Contractive Rearrangements. Heterocycles 2010, 82 (2), 1585– 1600, DOI: 10.3987/COM-10-S(E)117 | pl_PL |
dc.references | Nicolaus, N.; Zapke, J.; Riesterer, P.; Neudorfl, J. M.; Prokop, A.; Oschkinat, H.; Schmalz, H. G. Azides Derived from Colchicine and their Use in Library Synthesis: a Practical Entry to New Bioactive Derivatives of an Old Natural Drug. ChemMedChem 2010, 5 (5), 661– 665, DOI: 10.1002/cmdc.201000063 | pl_PL |
dc.references | Kowalczyk, K.; Błauż, A.; Ciszewski, W. M.; Wieczorek, A.; Rychlik, B.; Plażuk, D. Colchicine metallocenyl bioconjugates showing high antiproliferative activities against cancer cell lines. Dalton Trans. 2017, 46 (48), 17041– 17052, | pl_PL |
dc.references | Kowalczyk, K.; Błauż, A.; Ciszewski, W. M.; Wieczorek, A.; Rychlik, B.; Plażuk, D. Correction: Colchicine metallocenyl bioconjugates showing high antiproliferative activities against cancer cell lines. Dalton Trans. 2018, 47 (8), 2822, DOI: 10.1039/C8DT90016G | pl_PL |
dc.references | Beauperin, M.; Polat, D.; Roudesly, F.; Top, S.; Vessieres, A.; Oble, J.; Jaouen, G.; Poli, G. Approach to ferrocenyl-podophyllotoxin analogs and their evaluation as anti-tumor agents. J. Organomet. Chem. 2017, 839, 83– 90, DOI: 10.1016/j.jorganchem.2017.02.005 | pl_PL |
dc.references | Wieczorek, A.; Blauz, A.; Makal, A.; Rychlik, B.; Plazuk, D. Synthesis and evaluation of biological properties of ferrocenyl-podophyllotoxin conjugates. Dalton Trans. 2017, 46 (33), 10847– 10858, DOI: 10.1039/C7DT02107K | pl_PL |
dc.references | Wieczorek, A.; Błauż, A.; Zal, A.; Arabshahi, H. J.; Reynisson, J.; Hartinger, C. G.; Rychlik, B.; Plażuk, D. Ferrocenyl Paclitaxel and Docetaxel Derivatives: Impact of an Organometallic Moiety on the Mode of Action of Taxanes. Chem. - Eur. J. 2016, 22 (32), 11413– 21, DOI: 10.1002/chem.201601809 | pl_PL |
dc.references | Bennett, M. A.; Smith, A. K. Arene Ruthenium(II) Complexes Formed by Dehydrogenation of Cyclohexadienes with Ruthenium(III) Trichloride. J. Chem. Soc., Dalton Trans. 1974, (2), 233– 241, DOI: 10.1039/dt9740000233 | pl_PL |
dc.references | Kiel, W. A.; Ball, R. G.; Graham, W. A. G. Carbonyl-η-hexamethylbenzene complexes of osmium. Carbon-hydrogen activation by (η-C6Me6)Os(CO)(H)2. J. Organomet. Chem. 1990, 383 (1), 481– 496, DOI: 10.1016/0022-328X(90)85149-S | pl_PL |
dc.references | White, C.; Yates, A.; Maitlis, P.; Heinekey, D. (η5-Pentamethylcyclopentadienyl) Rhodium and-Iridium Compounds. Inorg. Synt. 2007, 228– 234, DOI: 10.1002/9780470132609.ch53 | pl_PL |
dc.references | Holland, J. P.; Jones, M. W.; Cohrs, S.; Schibli, R.; Fischer, E. Fluorinated quinazolinones as potential radiotracers for imaging kinesin spindle protein expression. Bioorg. Med. Chem. 2013, 21 (2), 496– 507, DOI: 10.1016/j.bmc.2012.11.013 | pl_PL |
dc.references | Mészáros, J. P.; Dömötör, O.; Hackl, C. M.; Roller, A.; Keppler, B. K.; Kandioller, W.; Enyedy, É. A. Structural and solution equilibrium studies on half-sandwich organorhodium complexes of (N, N) donor bidentate ligands. New J. Chem. 2018, 42 (13), 11174– 11184, DOI: 10.1039/C8NJ01681J | pl_PL |
dc.references | Pizarro, A. M.; Habtemariam, A.; Sadler, P. J. Activation mechanisms for organometallic anticancer complexes. In Medicinal Organometallic Chemistry; Springer, 2010; pp 21– 56. | pl_PL |
dc.references | Babak, M. V.; Meier, S. M.; Legin, A. A.; Adib Razavi, M. S.; Roller, A.; Jakupec, M. A.; Keppler, B. K.; Hartinger, C. G. Am(m)ines Make the Difference: Organoruthenium Am(m)ine Complexes and Their Chemistry in Anticancer Drug Development. Chem. - Eur. J. 2013, 19 (13), 4308– 4318, DOI: 10.1002/chem.201202657 | pl_PL |
dc.references | Kubanik, M.; Holtkamp, H.; Söhnel, T.; Jamieson, S. M. F.; Hartinger, C. G. Impact of the Halogen Substitution Pattern on the Biological Activity of Organoruthenium 8-Hydroxyquinoline Anticancer Agents. Organometallics 2015, 34 (23), 5658– 5668, DOI: 10.1021/acs.organomet.5b00868 | pl_PL |
dc.references | Kurzwernhart, A.; Kandioller, W.; Enyedy, E. A.; Novak, M.; Jakupec, M. A.; Keppler, B. K.; Hartinger, C. G. 3-Hydroxyflavones vs. 3-hydroxyquinolinones: structure-activity relationships and stability studies on Ru(II)(arene) anticancer complexes with biologically active ligands. Dalton Trans. 2013, 42 (17), 6193– 202, DOI: 10.1039/C2DT32206D | pl_PL |
dc.references | Hanif, M.; Meier, S. M.; Kandioller, W.; Bytzek, A.; Hejl, M.; Hartinger, C. G.; Nazarov, A. A.; Arion, V. B.; Jakupec, M. A.; Dyson, P. J.; Keppler, B. K. From hydrolytically labile to hydrolytically stable Ru(II)-arene anticancer complexes with carbohydrate-derived co-ligands. J. Inorg. Biochem. 2011, 105 (2), 224– 31, DOI: 10.1016/j.jinorgbio.2010.10.00 | pl_PL |
dc.references | El-Nassan, H. B. Advances in the discovery of kinesin spindle protein (Eg5) inhibitors as antitumor agents. Eur. J. Med. Chem. 2013, 62, 614– 31, DOI: 10.1016/j.ejmech.2013.01.031 | pl_PL |
dc.references | Matsuno, K.; Sawada, J.; Asai, A. Therapeutic potential of mitotic kinesin inhibitors in cancer. Expert Opin. Ther. Pat. 2008, 18 (3), 253– 274, DOI: 10.1517/13543776.18.3.253 | pl_PL |
dc.references | Carol, H.; Lock, R.; Houghton, P. J.; Morton, C. L.; Kolb, E. A.; Gorlick, R.; Reynolds, C. P.; Maris, J. M.; Keir, S. T.; Billups, C. A.; Smith, M. A. Initial testing (stage 1) of the kinesin spindle protein inhibitor ispinesib by the pediatric preclinical testing program. Pediatr. Blood Cancer 2009, 53 (7), 1255– 1263, DOI: 10.1002/pbc.22056 | pl_PL |
dc.references | Al-Masoudi, W. A.; Al-Masoudi, N. A.; Weibert, B.; Winter, R. Synthesis, X-ray structure, in vitro HIV and kinesin Eg5 inhibition activities of new arene ruthenium complexes of pyrimidine analogs. J. Coord. Chem. 2017, 70 (12), 2061– 2073, DOI: 10.1080/00958972.2017.1334259 | pl_PL |
dc.references | Al-Masoudi, W. A.; Al-Masoudi, N. A. A ruthenium complexes of monastrol and its pyrimidine analogues: Synthesis and biological properties. Phosphorus, Sulfur Silicon Relat. Elem. 2019, 194 (11), 1020– 1027, DOI: 10.1080/10426507.2019.1597362 | pl_PL |
dc.references | Talapatra, S. K.; Schuttelkopf, A. W.; Kozielski, F. The structure of the ternary Eg5-ADP-ispinesib complex. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2012, 68 (10), 1311– 1319, DOI: 10.1107/S0907444912027965 | pl_PL |
dc.references | Zhang, B.; Liu, J.-F.; Xu, Y.; Ng, S.-C. Crystal structure of HsEg5 in complex with clinical candidate CK0238273 provides insight into inhibitory mechanism, potency, and specificity. Biochem. Biophys. Res. Commun. 2008, 372 (4), 565– 570, DOI: 10.1016/j.bbrc.2008.05.074 | pl_PL |
dc.references | Myers, S. M.; Collins, I. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy. Future Med. Chem. 2016, 8 (4), 463– 89, DOI: 10.4155/fmc.16.5 | pl_PL |
dc.references | Rashid, U.; Hassan, S. F.; Nazir, S.; Wadood, A.; Waseem, M.; Ansari, F. L. Synthesis, docking studies, and in silico ADMET predictions of some new derivatives of pyrimidine as potential KSP inhibitors. Med. Chem. Res. 2015, 24 (1), 304– 315, DOI: 10.1007/s00044-014-1120-z | pl_PL |
dc.references | Park, H. W.; Ma, Z.; Zhu, H.; Jiang, S.; Robinson, R. C.; Endow, S. A. Structural basis of small molecule ATPase inhibition of a human mitotic kinesin motor protein. Sci. Rep. 2017, 7 (1), 15121, DOI: 10.1038/s41598-017-14754-6 | pl_PL |
dc.references | hai, L.-Q.; Liu, G.; Zhang, Y.-L.; Huang, J.-J.; Tong, J.-F. Synthesis, crystal structure, fluorescence, electrochemical property, and SOD-like activity of an unexpected nickel (II) complex with a quinazoline-type ligand. J. Coord. Chem. 2013, 66 (22), 3926– 3938, DOI: 10.1080/00958972.2013.857016 | pl_PL |
dc.references | Batinić-Haberle, I.; Rebouças, J. S.; Spasojević, I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid. Redox Signaling 2010, 13 (6), 877– 918, DOI: 10.1089/ars.2009.2876 | pl_PL |
dc.references | Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 1999, 26 (9), 1231– 1237, DOI: 10.1016/S0891-5849(98)00315-3 | pl_PL |
dc.references | Błauż, A.; Rychlik, B. Drug-selected cell line panels for evaluation of the pharmacokinetic consequences of multidrug resistance proteins. J. Pharmacol. Toxicol. Methods 2017, 84, 57– 65, DOI: 10.1016/j.vascn.2016.11.001 | pl_PL |
dc.references | Crooke, S. T.; Snyder, R. M.; Butt, T. R.; Ecker, D. J.; Allaudeen, H. S.; Monia, B.; Mirabelli, C. K. Cellular and molecular pharmacology of auranofin and related gold complexes. Biochem. Pharmacol. 1986, 35 (20), 3423– 3431, DOI: 10.1016/0006-2952(86)90608-8 | pl_PL |
dc.references | Ishikawa, T.; Ali-Osman, F. Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance. J. Biol. Chem. 1993, 268 (27), 20116– 20125 | pl_PL |
dc.identifier.doi | 10.1021/acs.inorgchem.0c00957 | |
dc.discipline | nauki chemiczne | pl_PL |