dc.contributor.author | Łazarz, Marcin | |
dc.date.accessioned | 2021-05-05T15:50:39Z | |
dc.date.available | 2021-05-05T15:50:39Z | |
dc.date.issued | 2019-10-30 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/35362 | |
dc.description.abstract | Even if a lattice L is not distributive, it is still possible that for particular elements x, y, z ∈ L it holds (x∨y) ∧z = (x∧z) ∨ (y ∧z). If this is the case, we say that the triple (x, y, z) is distributive. In this note we provide some sufficient conditions for the distributivity of a given triple. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;3 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | Distributive triple | en |
dc.subject | dually distributive triple | en |
dc.subject | covering diamond | en |
dc.title | A Note on Distributive Triples | en |
dc.type | Other | |
dc.page.number | 207-211 | |
dc.contributor.authorAffiliation | University of Wrocław, Poland, Department of Logic and Methodology of Sciences | en |
dc.identifier.eissn | 2449-836X | |
dc.references | G. Birkhoff, Lattice Theory, American Mathematical Society Colloquium Publications, Vol. XXV, Providence, Rhode Island (1973). | en |
dc.references | E. Fried, G. Grätzer, H. Lakser, Projective geometries as cover-preserving sublattices, Algebra Universalis, Vol. 27 (1990), pp. 270–278. | en |
dc.references | G. Grätzer, General lattice theory, Birkhäuser, Basel, Stuttgart (1978). | en |
dc.references | G. Grätzer, Lattice Theory: Foundation, Birkhäuser, Basel (2011). | en |
dc.references | C. Herrmann, A. P. Huhn, Lattices of normal subgroups which are generated by frames, [in:] Proceedings of the Lattice Theory Colloquium, Szeged 1974, Colloq. Math. Soc. János Bolyai, 14, pp. 97–136, North-Holland, Amsterdam (1976). | en |
dc.references | B. Jónsson, Equational Classes of Lattices, Mathematica Scandinavica, Vol. 22 (1968), pp. 187–196. | en |
dc.references | M. Stern, Semimodular Lattices. Theory and Applications, Cambridge University Press (1999). | en |
dc.contributor.authorEmail | lazarzmarcin@poczta.onet.pl | |
dc.identifier.doi | 10.18778/0138-0680.48.3.04 | |
dc.relation.volume | 48 | |