Show simple item record

dc.contributor.authorBartoszewicz, Artur
dc.contributor.authorFilipczak, Małgorzata
dc.contributor.authorPrus-Wiśniowski, Franciszek
dc.contributor.editorFilipczak, Małgorzata
dc.contributor.editorWagner-Bojakowska, Elżbieta
dc.date.accessioned2019-05-28T11:47:49Z
dc.date.available2019-05-28T11:47:49Z
dc.date.issued2013
dc.identifier.citationBartoszewicz A., Filipczak M., Prus-Wiśniowski F., Topological and algebraic aspects of subsums of series, [w:] Traditional and present-day topics in real analysis. Dedicated to Professor Jan Stanisław Lipiński, Filipczak M., Wagner-Bojakowska E. (red.), Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2013, s. 345-366, doi: 10.18778/7525-971-1.21pl_PL
dc.identifier.isbn978-83-7525-971-1
dc.identifier.urihttp://hdl.handle.net/11089/28723
dc.description.sponsorshipUdostępnienie publikacji Wydawnictwa Uniwersytetu Łódzkiego finansowane w ramach projektu „Doskonałość naukowa kluczem do doskonałości kształcenia”. Projekt realizowany jest ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Wiedza Edukacja Rozwój; nr umowy: POWER.03.05.00-00-Z092/17-00.pl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofFilipczak M., Wagner-Bojakowska E. (red.), Traditional and present-day topics in real analysis. Dedicated to Professor Jan Stanisław Lipiński, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2013;
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectsubsums of seriespl_PL
dc.subjectachievment set of sequencepl_PL
dc.subjectM-Cantorvalspl_PL
dc.titleTopological and algebraic aspects of subsums of seriespl_PL
dc.typeBook chapterpl_PL
dc.page.number345-366pl_PL
dc.contributor.authorAffiliationŁódź University of Technology, Institute of Mathematicspl_PL
dc.contributor.authorAffiliationŁódź University, Faculty of Mathematics and Computer Sciencepl_PL
dc.contributor.authorAffiliationUniversity of Szczecin, Institute of Mathematicspl_PL
dc.referencesR. Anisca, Ch. Chlebovec, On the structure of arithmetic sums of Cantor sets with constant rations of dissection, Nonlinearity 22 (2009), 2127–2140.pl_PL
dc.referencesT. Banakh, A. Bartoszewicz, S. Gła˛b, E. Szymonik, Algebraic and topological properties of some sets in l1, Colloq. Math. 129 (2012), 75–85.pl_PL
dc.referencesC. R. Banerjee, B. K. Lahiri, On subseries of divergent series, Amer. Math. Monthly 71 (1964), 767–768pl_PL
dc.referencesE. Barone, Sul condominio di misure e di masse finite, Rend. Mat. Appl. 3 (1983), 229–238.pl_PL
dc.referencesA. Bartoszewicz, M. Filipczak, E. Szymonik, Muligeometric sequences and Cantorvals, to appear in CEJM.pl_PL
dc.referencesC. A. Cabrelli, K. E. Hare, U. M. Molter, Sums of Cantor sets, Ergodic Theory Dynamical systems 17 (1997), 1299–1313.pl_PL
dc.referencesC. Ferens, On the range of purely atomic measures, Studia Math. 77 (1984), 261–263.pl_PL
dc.referencesJ. A. Guthrie, J. E. Nymann, The topological structure of the set of subsums of an infinite series, Colloq. Math. 55 (1988), 323–327.pl_PL
dc.referencesH. Hornich, Über beliebige Teilsummen absolut konvergenter Reihen, Monasth. Math. Phys. 49 (1941), 316–320.pl_PL
dc.referencesR. Jones, Achievement sets of sequences, Amer. Math. Monthly 118, no. 6 (2011), 508–521.pl_PL
dc.referencesS. Kakeya, On the partial sums of an infinite series, Tôhoku Sci. Rep. 3, no. 4 (1914), 159–164.pl_PL
dc.referencesS. Kakeya, On the set of partial sums of an infinite series, Proc. Tokyo Math.-Phys. Soc. 2nd ser. 7 (1914), 250–251.pl_PL
dc.referencesA. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Math. 156, Springer, New York, 1995.pl_PL
dc.referencesP. Kesava Menon, On a class of perfect sets, Bull. Amer. Math. Soc. 54 (1948), 706–711.pl_PL
dc.referencesS. Koshi, H. Lai, The ranges of set functions, Hokkaido Math. J. 10 (special issue) (1981), 348–360.pl_PL
dc.referencesP. Mendes, F. Oliveira, On the topological structure of arithmetic sum of two Cantor sets, Nonlinearity 7 (1994), 329–343.pl_PL
dc.referencesM. Morán, Fractal series, Mathematica 36 (1989), 334–348.pl_PL
dc.referencesJ. E. Nymann, R. A. Sáenz, On the paper of Guthrie and Nymann on subsums of an infinite series, Colloq. Math. 83 (2000), 1–4.pl_PL
dc.referencesJ. E. Nymann, R. A. Sáenz, The topoplogical structure of the set of P-sums of a sequence, II, Publ. Math. Debrecen 56 (2000), 77–85.pl_PL
dc.referencesG. Pólya und G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Bd. I, Berlin, 1925.pl_PL
dc.referencesF. Prus-Wiśniowski, Beyond the sets of subsums, preprint, Łódź University, 2013.pl_PL
dc.referencesR. Wituła, Continuity and the Darboux property of nonatomic finitely additive measures, in: Generalized Functions and Convergence, Memorial Volume for Professor Jan Mikusiński (eds. P. Antosik and A. Kamiński), World Scientific 1990.pl_PL
dc.referencesA. D. Weinstein, B. E. Shapiro, On the structure of the set of ᾱ-representable numbers, Izv. Vyssh. Uchebn. Zaved. Mat. 24 (1980), 8–11.pl_PL
dc.contributor.authorEmailarturbar@p.lodz.plpl_PL
dc.contributor.authorEmailmalfil@math.uni.lodz.plpl_PL
dc.contributor.authorEmailwisniows@univ.szczecin.plpl_PL
dc.identifier.doi10.18778/7525-971-1.21
dc.subject.msc40A05
dc.subject.msc11B05
dc.subject.msc28A75


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe