dc.contributor.author | Bartoszewicz, Artur | |
dc.contributor.author | Filipczak, Małgorzata | |
dc.contributor.author | Prus-Wiśniowski, Franciszek | |
dc.contributor.editor | Filipczak, Małgorzata | |
dc.contributor.editor | Wagner-Bojakowska, Elżbieta | |
dc.date.accessioned | 2019-05-28T11:47:49Z | |
dc.date.available | 2019-05-28T11:47:49Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Bartoszewicz A., Filipczak M., Prus-Wiśniowski F., Topological and algebraic aspects of subsums of series, [w:] Traditional and present-day topics in real analysis. Dedicated to Professor Jan Stanisław Lipiński, Filipczak M., Wagner-Bojakowska E. (red.), Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2013, s. 345-366, doi: 10.18778/7525-971-1.21 | pl_PL |
dc.identifier.isbn | 978-83-7525-971-1 | |
dc.identifier.uri | http://hdl.handle.net/11089/28723 | |
dc.description.sponsorship | Udostępnienie publikacji Wydawnictwa Uniwersytetu Łódzkiego finansowane w ramach projektu „Doskonałość naukowa kluczem do doskonałości kształcenia”. Projekt realizowany jest ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Wiedza Edukacja Rozwój; nr umowy: POWER.03.05.00-00-Z092/17-00. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartof | Filipczak M., Wagner-Bojakowska E. (red.), Traditional and present-day topics in real analysis. Dedicated to Professor Jan Stanisław Lipiński, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2013; | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | subsums of series | pl_PL |
dc.subject | achievment set of sequence | pl_PL |
dc.subject | M-Cantorvals | pl_PL |
dc.title | Topological and algebraic aspects of subsums of series | pl_PL |
dc.type | Book chapter | pl_PL |
dc.page.number | 345-366 | pl_PL |
dc.contributor.authorAffiliation | Łódź University of Technology, Institute of Mathematics | pl_PL |
dc.contributor.authorAffiliation | Łódź University, Faculty of Mathematics and Computer Science | pl_PL |
dc.contributor.authorAffiliation | University of Szczecin, Institute of Mathematics | pl_PL |
dc.references | R. Anisca, Ch. Chlebovec, On the structure of arithmetic sums of Cantor sets with constant rations of dissection, Nonlinearity 22 (2009), 2127–2140. | pl_PL |
dc.references | T. Banakh, A. Bartoszewicz, S. Gła˛b, E. Szymonik, Algebraic and topological properties of some sets in l1, Colloq. Math. 129 (2012), 75–85. | pl_PL |
dc.references | C. R. Banerjee, B. K. Lahiri, On subseries of divergent series, Amer. Math. Monthly 71 (1964), 767–768 | pl_PL |
dc.references | E. Barone, Sul condominio di misure e di masse finite, Rend. Mat. Appl. 3 (1983), 229–238. | pl_PL |
dc.references | A. Bartoszewicz, M. Filipczak, E. Szymonik, Muligeometric sequences and Cantorvals, to appear in CEJM. | pl_PL |
dc.references | C. A. Cabrelli, K. E. Hare, U. M. Molter, Sums of Cantor sets, Ergodic Theory Dynamical systems 17 (1997), 1299–1313. | pl_PL |
dc.references | C. Ferens, On the range of purely atomic measures, Studia Math. 77 (1984), 261–263. | pl_PL |
dc.references | J. A. Guthrie, J. E. Nymann, The topological structure of the set of subsums of an infinite series, Colloq. Math. 55 (1988), 323–327. | pl_PL |
dc.references | H. Hornich, Über beliebige Teilsummen absolut konvergenter Reihen, Monasth. Math. Phys. 49 (1941), 316–320. | pl_PL |
dc.references | R. Jones, Achievement sets of sequences, Amer. Math. Monthly 118, no. 6 (2011), 508–521. | pl_PL |
dc.references | S. Kakeya, On the partial sums of an infinite series, Tôhoku Sci. Rep. 3, no. 4 (1914), 159–164. | pl_PL |
dc.references | S. Kakeya, On the set of partial sums of an infinite series, Proc. Tokyo Math.-Phys. Soc. 2nd ser. 7 (1914), 250–251. | pl_PL |
dc.references | A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Math. 156, Springer, New York, 1995. | pl_PL |
dc.references | P. Kesava Menon, On a class of perfect sets, Bull. Amer. Math. Soc. 54 (1948), 706–711. | pl_PL |
dc.references | S. Koshi, H. Lai, The ranges of set functions, Hokkaido Math. J. 10 (special issue) (1981), 348–360. | pl_PL |
dc.references | P. Mendes, F. Oliveira, On the topological structure of arithmetic sum of two Cantor sets, Nonlinearity 7 (1994), 329–343. | pl_PL |
dc.references | M. Morán, Fractal series, Mathematica 36 (1989), 334–348. | pl_PL |
dc.references | J. E. Nymann, R. A. Sáenz, On the paper of Guthrie and Nymann on subsums of an infinite series, Colloq. Math. 83 (2000), 1–4. | pl_PL |
dc.references | J. E. Nymann, R. A. Sáenz, The topoplogical structure of the set of P-sums of a sequence, II, Publ. Math. Debrecen 56 (2000), 77–85. | pl_PL |
dc.references | G. Pólya und G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Bd. I, Berlin, 1925. | pl_PL |
dc.references | F. Prus-Wiśniowski, Beyond the sets of subsums, preprint, Łódź University, 2013. | pl_PL |
dc.references | R. Wituła, Continuity and the Darboux property of nonatomic finitely additive measures, in: Generalized Functions and Convergence, Memorial Volume for Professor Jan Mikusiński (eds. P. Antosik and A. Kamiński), World Scientific 1990. | pl_PL |
dc.references | A. D. Weinstein, B. E. Shapiro, On the structure of the set of ᾱ-representable numbers, Izv. Vyssh. Uchebn. Zaved. Mat. 24 (1980), 8–11. | pl_PL |
dc.contributor.authorEmail | arturbar@p.lodz.pl | pl_PL |
dc.contributor.authorEmail | malfil@math.uni.lodz.pl | pl_PL |
dc.contributor.authorEmail | wisniows@univ.szczecin.pl | pl_PL |
dc.identifier.doi | 10.18778/7525-971-1.21 | |
dc.subject.msc | 40A05 | |
dc.subject.msc | 11B05 | |
dc.subject.msc | 28A75 | |