Show simple item record

dc.contributor.authorIndrzejczak, Andrzej
dc.description.abstractIn several applications of sequent calculi going beyond pure logic, an introduction of suitably defined rules seems to be more profitable than addition of extra axiomatic sequents. A program of formalization of mathematical theories via rules of special sort was developed successfully by Negri and von Plato. In this paper a general theorem on possible ways of transforming axiomatic sequents into rules in sequent calculi is proved. We discuss its possible applications and provide some case studies for illustration.en_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic; 4
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.en_GB
dc.subjectsequent calculusen_GB
dc.subjectcut eliminationen_GB
dc.subjectproof theoryen_GB
dc.subjectextralogical rulesen_GB
dc.titleRule-Generation Theorem and its Applicationsen_GB
dc.contributor.authorAffiliationUniversity of Łódź, Department of Logic
dc.references[1] K. Bimbo, Proof Theory, CRC Press 2015.en_GB
dc.references[2] T. Braüner, Hybrid Logic and its Proof-Theory, Roskilde 2009.en_GB
dc.references[3] S. R. Buss, An Introduction to Proof Theory [in:] S. Buss (ed.) Handbook of Proof Theory, Elsevier 1998.en_GB
dc.references[4] A. Ciabattoni, N. Galatos and K. Terui, From axioms to analytic rules in nonclassical logics , [in:] LICS (2002), pp. 229–240, IEEE Computer Society, 2008.en_GB
dc.references[5] A. Ciabattoni, G. Metcalfe and F. Montagna, Algebraic and proof-theoretic characterizations of truth stressers for MTL and its extensions, Fuzzy Sets and Systems 161(3) (2010), pp. 369–389.en_GB
dc.references[6] A. Ciabattoni and R. Ramanayake, Structural extensions of display calculi: a general recipe, WoLLIC 2013, LNCS pp. 81–95, Springer 2013.en_GB
dc.references[7] H. B. Curry, Foundations of Mathematical Logic , McGraw-Hill, New York 1963.en_GB
dc.references[8] M. Fitting, Proof Methods for Modal and Intuitionistic Logics , Reidel, Dordrecht 1983.en_GB
dc.references[9] G. Gentzen, Untersuchungen ̈uber das Logische Schliessen, Mathematische Zeitschrift 39 (1934), pp. 176–210 and pp. 405–431.en_GB
dc.references[10] G. Gentzen, Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie, Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, New Series 4, Leipzig, pp. 19–44, 1938.en_GB
dc.references[11] A. Indrzejczak, Natural Deduction, Hybrid Systems and Modal Logics, Springer 2010.en_GB
dc.references[12] A. Indrzejczak, Sequent Calculi in Classical Logic [in polish], Lodz University Publications 2013.en_GB
dc.references[13] A. Indrzejczak, Eliminability of Cut in Hypersequent Calculi for some Modal Logics of Linear Frames, Information Processing Letters 115/2 (2015), pp. 75–81.en_GB
dc.references[14] A. Indrzejczak, Simple Cut Elimination Proof for Hybrid Logic, Logic and Logical Philosophy 25/2 (2016), pp. 129–141.en_GB
dc.references[15] A. Indrzejczak, Simple Decision Procedure for S5 in Standard Cut-Free Sequent Calculus, Bulletin of the Section of Logic 45:1 (2016), pp. 95–102.en_GB
dc.references[16] A. Indrzejczak, Fregean Description Theory in Proof-Theoretical Setting, Logic and Logical Philosophy, Vol. 28, No 1 (2019), pp. 137–155.en_GB
dc.references[17] A. Indrzejczak, Cut-Free Modal Theory of Definite Descriptions, [in:] G. Bezhanishvili et al. (eds.) Advances in Modal Logic 12, pp. 387–406, College Publications 2018.en_GB
dc.references[18] M. Kracht, Power and weakness of the modal display calculus , [in:] H. Wansing (ed.) Proof Theory of Modal Logic, pp. 93–121, Kluwer 1996.en_GB
dc.references[19] H. Kurokawa, Hypersequent Calculi for Modal Logics Extending S4, [in:] New Frontiers in Artificial Intelligence, pp. 51–68, Springer 2014.en_GB
dc.references[20] B. Lellmann, Axioms vs hypersequent rules with context restrictions, [in:] Proceedings of IJCAR , pp. 307–321, Springer 2014.en_GB
dc.references[21] B. Lellmann, Hypersequent rules with restricted contexts for propositional modal logics, Theoretical Computer Science.en_GB
dc.references[22] B. Lellmann and D. Pattinson, Correspondence between modal Hilbert axioms and sequent rules with an application to S5, [in:] TABLEAUX 2013, pp. 219–233, Springer 2013.en_GB
dc.references[23] M. Manzano, Model Theory, Oxford University Press, Oxford 1999.en_GB
dc.references[24] G. Metcalfe, N. Olivetti and D. Gabbay, Proof Theory for Fuzzy Logics, Springer 2008.en_GB
dc.references[25] T. Nagashima, An extension of the Craig-Schütte interpolation theorem, Annals of the Japan Association for the Philosophy of Science 3 (1966), pp. 12–18.en_GB
dc.references[26] S. Negri and J. von Plato, Structural Proof Theory , Cambridge University Press, Cambridge 2001.en_GB
dc.references[27] S. Negri and J. von Plato, Proof Analysis, Cambridge University Press, Cambridge 2011.en_GB
dc.references[28] M. Ohnishi and K. Matsumoto, Gentzen Method in Modal Calculi I, Osaka Mathematical Journal 9 (1957), pp. 113–130.en_GB
dc.references[29] F. Paoli, Substructural Logics: A Primer, Kluwer, Dordrecht 2002.en_GB
dc.references[30] F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, Springer 2011.en_GB
dc.references[31] P. Schroeder-Heister, Open Problems in Proof-theoretic Semantics, [in:] T. Piecha, P. Schroeder-Heister (eds.) Advances in Proof-theoretic Semantics, pp. 253–283, Springer 2016.en_GB
dc.references[32] G. Takeuti, Proof Theory, North-Holland, Amsterdam 1987.en_GB
dc.references[33] A. S. Troelstra and H. Schwichtenberg, Basic Proof Theory, Oxford University Press, Oxford 1996.en_GB
dc.references[34] H. Wansing, Displaying Modal Logics, Kluwer Academic Publishers, Dordrecht 1999.en_GB
dc.references[35] H. Wansing, Sequent Systems for Modal Logics, [in:] D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol. IV, pp. 89–133, Reidel Publishing Company, Dordrecht 2002.en_GB

Files in this item


This item appears in the following Collection(s)

Show simple item record

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Except where otherwise noted, this item's license is described as This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.