Show simple item record

dc.contributor.authorGrande, Zbigniew
dc.contributor.authorMarciniak, Mariola
dc.contributor.editorFilipczak, Małgorzata
dc.contributor.editorWagner-Bojakowska, Elżbieta
dc.date.accessioned2019-05-21T12:31:39Z
dc.date.available2019-05-21T12:31:39Z
dc.date.issued2013
dc.identifier.citationGrande Z., Marciniak M., On Extension Problem, Decomposing and Covering of Functions, [w:] Traditional and present-day topics in real analysis. Dedicated to Professor Jan Stanisław Lipiński, Filipczak M., Wagner-Bojakowska E. (red.), Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2013, s. 129-149, doi: 10.18778/7525-971-1.10pl_PL
dc.identifier.isbn978-83-7525-971-1
dc.identifier.urihttp://hdl.handle.net/11089/28349
dc.descriptionIn this chapter, we review some problems related to extension, decomposition and covering of functions. We mainly do not give proofs of the results stated here.pl_PL
dc.description.sponsorshipUdostępnienie publikacji Wydawnictwa Uniwersytetu Łódzkiego finansowane w ramach projektu „Doskonałość naukowa kluczem do doskonałości kształcenia”. Projekt realizowany jest ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Wiedza Edukacja Rozwój; nr umowy: POWER.03.05.00-00-Z092/17-00.pl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofFilipczak M., Wagner-Bojakowska E. (red.), Traditional and present-day topics in real analysis. Dedicated to Professor Jan Stanisław Lipiński, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2013;
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject26A15pl_PL
dc.subject26A21pl_PL
dc.subject54C20pl_PL
dc.subject54C30pl_PL
dc.subjectextensions of mapspl_PL
dc.subjectcountable continuitypl_PL
dc.subjectovering and decomposition of functionspl_PL
dc.titleOn Extension Problem, Decomposing and Covering of Functionspl_PL
dc.typeBook chapterpl_PL
dc.page.number129-149pl_PL
dc.contributor.authorAffiliationKazimierz Wielki University, Institute of Mathematicspl_PL
dc.referencesS. I. Adjan, P.S. Novikov, On a semicontinuous function, Moscov. Gos. Ped. Inst. Uchen. Zap. 138 (1958), 3-10.pl_PL
dc.referencesV. Aversa, M. Laczkovich, Extension theorem on derivatives of additive interval functions, Acta Math. Acad. Sci. Hungar. 39, no. 1-3 (1982), 267–277.pl_PL
dc.referencesV. Aversa, M. Laczkovich, D. Preiss, Extension of differentiable functions, Comment. Math. Univ. Carolin. 26 (1985), 597–609.pl_PL
dc.referencesA. Bruckner, Differentation of real functions, Lecture Notes in Math 659, Springer Verlag Berlin Heidelberg New York, 1978.pl_PL
dc.referencesJ. Cichoń, M. Morayne, Universal functions and generalized classes of functions, Proc. Amer. Math. Soc. 102 (1988), 83–89.pl_PL
dc.referencesK. Ciesielski, Set theoretical analysis, J. Appl. Anal. 3, no 2 (1997), 143–190.pl_PL
dc.referencesK. Ciesielski, M. Szyszkowski, A symmetrically continuous functions which is not countably continuous, Real Analysis Exchange 22, no. 1 (1996/7), 428–432.pl_PL
dc.referencesA. Csaszar, M. Laczkovich, Some remarks on discrete Baire classes, Acta Math. Acad. Hungar. 33 (1979), 463–472.pl_PL
dc.referencesU. B. Darji, Decomposition of functions, Real Anal. Exchange 21, no. 1 (1995/96), 19–25.pl_PL
dc.referencesR. Filipow, A. Nowik, P. Szuca, There are measurable Hamel functions, Real Anal. Exchange bf 36, no. 1, (2010), 223–230.pl_PL
dc.referencesC. Goffman, N. Neugebauer, T. Nishiura, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497–506.pl_PL
dc.referencesZ. Grande, Przedłużanie funkcji pierwszej klasy Baire’a, Zeszyty Naukowe Politechniki Gdańskiej 285, Matematyka XI (1978), 71–74.pl_PL
dc.referencesZ. Grande, M. Topolewska, Sur les fonctions vectorielles approximativement continues, Časopis Pěst. Mat., 107 (1982), no. 4 333–340.pl_PL
dc.referencesZ. Grande, On the Darboux Property of the sum of cliquish functions, Real Anal. Exchange 17 (1991-92), 571–576.pl_PL
dc.referencesZ. Grande, On some special notions of approximate quasi-continuity, Real Anal. Exchange 24 (1998/99), 171–184.pl_PL
dc.referencesZ. Grande, Extending some functions to functions satisfying condition (A3), Real Anal. Exchange 28 (2002/2003), 573–578.pl_PL
dc.referencesZ. Grande, On the prolongation of Baire 1 functions to functions which are quasicontinuous and approximately continuous, Colloq. Math. 114 (2009), no. 2, 237–243pl_PL
dc.referencesZ.Grande, On the almost monotone convergence of sequences of continuous functions, Central European Journal of Mathematics 9, no. 4, (2011), 772–774.pl_PL
dc.referencesZ. Grande, Covering functions by countable many functions from some families, to appear.pl_PL
dc.referencesZ. Grande, A. Fatz-Grupka, On countably continuous functions, Tatra Mt. Math. Publ. 28 (2004), 57–63.pl_PL
dc.referencesG. Horbaczewska, On strongly countably continuous functions, Tatra Mt. Math. Publ. 42 (2009), 81–86.pl_PL
dc.referencesJ. E. Jayne, C. A. Rogers, First level Borel functions and isomohisms, Journ. de Math Pures et Appl. 61 (1982), 177–205.pl_PL
dc.referencesO. F. K. Kalenda, J. Spurny, Extending Baire-one functions on topological spaces, Topolology Appl. 149 (2005), 195–216.pl_PL
dc.referencesO. Karlova, Extension of continuous functions to Baire-one functions, Real Anal. Exchange 36, no. 1 (2010/2011), 149–160.pl_PL
dc.referencesB. Kirchheim, Baire one star Functions, Real Anal. Exchange 18, no. 2 (1992/93), 385–399.pl_PL
dc.referencesS. Jackson, R.D. Mauldin, Some complexity results in topology and analysis, Fund. Math. 141 (1991) 75-83.pl_PL
dc.referencesL. Keldiš, Sur les fonctions premières measurables, Soviet Math. Doklady 4 (1934) 192–197.pl_PL
dc.referencesM. Koc, L. Zajicek, A joint generalization of Whitney’s C1 extension theorem and Aversa-Laczkovich-Preiss’extension theorem, J. Math. Anal. Appl. 388 (2012), no. 2, 1027–1037.pl_PL
dc.referencesK. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.pl_PL
dc.referencesE. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), 837–842.pl_PL
dc.referencesG. Matusik, T. Natkaniec, Algebraic properties of Hamel functions, Acta Math. Hungar, 126, no. 3 (2010), 209-–229.pl_PL
dc.referencesM. Marciniak, Finitely continuous Darboux functions, Real Anal. Exchange 26 (2000/2011), 417–420.pl_PL
dc.referencesM. Marciniak, R. J. Pawlak, On the restrictions of functions, finitely continuous functions and path continuity, Tatra Mt. Math. Publ. 24 (2002), 65-77.pl_PL
dc.referencesJ. van Mill, R. Pol, Baire 1 functions which are not countable unions of continuous functions, Acta Math. Hungar. 66, no. 4 (1995), 289–300.pl_PL
dc.referencesA. W. Miller, S. G. Popvassilev, Vitali sets and Hamel bases that are Marczewski measurable, Fund. Math. 166, no. 3 (2000), 269-–279.pl_PL
dc.referencesT. Natkaniec, An Example of a quasi-continuous Hamel function, Real Anal. Exchange 36, no. 1 (2010), 231–236.pl_PL
dc.referencesT. Natkaniec, On additive countably continuous functions, Publ. Math. Debrecen 79, no. 1-2 (2011), 1–6.pl_PL
dc.referencesT. Neubrunn, Quasi-continuity, Real Anal. Exchange 14 (1988/89), 259–306.pl_PL
dc.referencesR. J. O’Malley, Baire* 1, Darboux functions, Proceedings of the American Mathematical Society 60 (1976).pl_PL
dc.referencesR. J. Pawlak, On some class of functions intermediate between the class B* 1 and the family of continuous functions, Tatra Mt. Math. Publ. 19 (2000), 135–144.pl_PL
dc.referencesG. Petruska, M. Laczkovich, Baire 1 functions,approximately continuous functions and derivatives, Acta. Math. Acad. Sci. Hungaricae 25 (1974), 189–212.pl_PL
dc.referencesJ. Pawlikowski, M. Sabok, Decomposing Borel functions and structure at finite levels of the Baire hierarchy, Ann. Pure Appl. Logic 163, no. 12 (2012) 1748–1764.pl_PL
dc.referencesK. Płotka, I. Recław, Finitely continuous Hamel functions, Real Anal. Exchange 30, no. 2 (2004/05), 867-–870.pl_PL
dc.referencesH. W. Pu, H. H. Pu On representation of Baire functions in a given family as sums of Baire Darboux functions with a common summand, Časopis Pěst. Mat. 112 (1987), 320–336.pl_PL
dc.referencesS. Saks, Theory of integral Warsaw (1937).pl_PL
dc.referencesW. Sierpiński, Sur un problème concernant les fonctions semi-continues, Fund. Math. 28 (1937), 1–6.pl_PL
dc.referencesS. Solecki, Decomposing Borel sets and Functions and the structure of Baire class 1 Functions Journal of the American Mathematical Society 11, no. 3 (1998), 521–550.pl_PL
dc.contributor.authorEmailgrande@ukw.edu.plpl_PL
dc.contributor.authorEmailmarmac@ukw.edu.plpl_PL
dc.identifier.doi10.18778/7525-971-1.10


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe