dc.contributor.author | Filipów, Rafał | |
dc.contributor.author | Natkaniec, Tomasz | |
dc.contributor.author | Szuca, Piotr | |
dc.contributor.editor | Filipczak, Małgorzata | |
dc.contributor.editor | Wagner-Bojakowska, Elżbieta | |
dc.date.accessioned | 2019-05-21T11:44:47Z | |
dc.date.available | 2019-05-21T11:44:47Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Filipów R., Natkaniec T., Szuca P., Ideal convergence, [w:] Traditional and present-day topics in real analysis. Dedicated to Professor Jan Stanisław Lipiński, Filipczak M., Wagner-Bojakowska E. (red.), Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2013, s. 69-91, doi: 10.18778/7525-971-1.07 | pl_PL |
dc.identifier.isbn | 978-83-7525-971-1 | |
dc.identifier.uri | http://hdl.handle.net/11089/28345 | |
dc.description.sponsorship | Udostępnienie publikacji Wydawnictwa Uniwersytetu Łódzkiego finansowane w ramach projektu „Doskonałość naukowa kluczem do doskonałości kształcenia”. Projekt realizowany jest ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Wiedza Edukacja Rozwój; nr umowy: POWER.03.05.00-00-Z092/17-00. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartof | Filipczak M., Wagner-Bojakowska E. (red.), Traditional and present-day topics in real analysis. Dedicated to Professor Jan Stanisław Lipiński, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2013; | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | 40A35 | pl_PL |
dc.subject | 40A30 | pl_PL |
dc.subject | 26A03 | pl_PL |
dc.subject | 54A20 | pl_PL |
dc.subject | 28A05 | pl_PL |
dc.subject | 05D10 | pl_PL |
dc.subject | 26A15 | pl_PL |
dc.subject | 26A21 | pl_PL |
dc.subject | ideal filter | pl_PL |
dc.subject | dual filter | pl_PL |
dc.subject | Borel ideal | pl_PL |
dc.subject | Katetov order | pl_PL |
dc.subject | ideal convergence | pl_PL |
dc.subject | Bolzano-Weierstrass property | pl_PL |
dc.subject | ideal pointwise convergence | pl_PL |
dc.subject | ideal equal convergence | pl_PL |
dc.subject | ideal discrete convergence | pl_PL |
dc.subject | ideal Baire class | pl_PL |
dc.subject | Lunina 7-tuple | pl_PL |
dc.title | Ideal convergence | pl_PL |
dc.type | Book chapter | pl_PL |
dc.page.number | 69-91 | pl_PL |
dc.contributor.authorAffiliation | University of Gdańsk, Institute of Mathematics | pl_PL |
dc.references | P. Barbarski, R. Filipów, N. Mrożek, Piotr Szuca, Uniform density u and Iuconvergence on a big set, Math. Commun. 16, no. 1 (2011), 125–130. | pl_PL |
dc.references | P. Barbarski, R. Filipów, N. Mrożek, Piotr Szuca, When does the Katětov order imply that one ideal extends the other?, Colloq. Math. 130, no. 1 (2013), 91–102. | pl_PL |
dc.references | T. Bartoszyński, H. Judah, Set theory: On the structure of the real line, A. K. Peters, Ltd., Wellesley, MA, 1995. | pl_PL |
dc.references | V. Bergelson, N. Hindman, Density versions of two generalizations of Schur’s theorem, J. Combin. Theory Ser. A 48, no. 1 (1988), 32–38. | pl_PL |
dc.references | A. Blass, Combinatorial cardinal characteristics of the continuum, Handbook of set theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, 395–489. | pl_PL |
dc.references | D. Borzestowski, Oral communication. | pl_PL |
dc.references | D. Borzestowski, I. Recław, On Lunina’s 7-tuples for ideal convergence, Real Anal. Exchange 35, no. 2 (2010), 479–485. | pl_PL |
dc.references | N. Bourbaki, Éléments de mathématique. Part I. Les structures fondamentales de l’analyse. Livre III. Topologie générale. Chapitres I et II, Actual. Sci. Ind., no. 858, Hermann & Cie., Paris, 1940. | pl_PL |
dc.references | A. Bouziad, The point of continuity property, neighbourhood assignments and filter convergences, Fund. Math. 218, no. 3 (2012), 225–242. | pl_PL |
dc.references | H. Cartan, Filtres et ultrafiltres., C. R. Acad. Sci. Paris 205 (1937), 777–779. | pl_PL |
dc.references | Á. Császár, M. Laczkovich, Discrete and equal convergence, Studia Sci. Math. Hungar. 10, no. 3-4 (1975), 463–472. | pl_PL |
dc.references | P. Das, S. Dutta, S. K. Pal, On I and I*-equal convergence and an Egoroff-type theorem, Matematički Vesnik (to appear). | pl_PL |
dc.references | G. Debs, J. Saint Raymond, Filter descriptive classes of Borel functions, Fund. Math. 204, no. 3 (2009), 189–213. | pl_PL |
dc.references | L. Drewnowski, T. Łuczak, On nonatomic submeasures on N, Arch. Math. (Basel) 91, no. 1 (2008), 76–85. | pl_PL |
dc.references | L. Drewnowski and T. Łuczak, On nonatomic submeasures on N. II, J. Math. Anal. Appl. 347 (2008), no. 2, 442-449. | pl_PL |
dc.references | I. Farah, S. Solecki, Two Fsd ideals, Proc. Amer. Math. Soc. 131, no. 6 (2003), 1971–1975. | pl_PL |
dc.references | H. Fast, Sur la convergence statistique, Colloq. Math. 2, no. 3-4 (1951), 241–244. | pl_PL |
dc.references | R. Filipów, Cardinal characteristics of quotient boolean algebras P(N)=I and ideal convergence of sequences of functions (preprint). | pl_PL |
dc.references | R. Filipów, N. Mrożek, I. Recław, Piotr Szuca, Ideal convergence of bounded sequences, J. Symbolic Logic 72, no. 2 (2007), 501–512. | pl_PL |
dc.references | R. Filipów, N. Mrożek, I. Recław, Piotr Szuca, Ideal version of Ramsey’s theorem, Czechoslovak Math. J. 61(2) (2011), 289–308. | pl_PL |
dc.references | R. Filipów, M. Staniszewski, On ideal equal convergence (preprint). | pl_PL |
dc.references | R. Filipów, P. Szuca, Density versions of Schur’s theorem for ideals generated by submeasures, J. Combin. Theory Ser. A 117, no. 7 (2010), 943–956. | pl_PL |
dc.references | R. Filipów, P. Szuca, Three kinds of convergence and the associated I-Baire classes, J. Math. Anal. Appl. 391, no. 1 (2012), 1–9. | pl_PL |
dc.references | P. Frankl, R. L. Graham, V. Rödl, Iterated combinatorial density theorems, J. Combin. Theory Ser. A 54, no. 1 (1990), 95–111. | pl_PL |
dc.references | J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118, no. 4 (1993), 1187–1192. | pl_PL |
dc.references | H. Hahn, Uber die Menge der Konvergenzpunkte einer Funktionfolge, Arch. der Math. und Physik 28 (1919), 34–45. | pl_PL |
dc.references | M. Hrušák, Combinatorics of filters and ideals, Set theory and its applications, Contemp. Math., vol. 533, Amer. Math. Soc., Providence, RI (2011), 29–69. | pl_PL |
dc.references | W. Just, A. Krawczyk, On certain Boolean algebras P(w)=I, Trans. Amer. Math. Soc. 285, no. 1 (1984), 411–429. | pl_PL |
dc.references | M. Katětov, Products of filters, Comment. Math. Univ. Carolinae 9 (1968), 173–189. | pl_PL |
dc.references | M. Katětov, On descriptive classes of functions, Theory of sets and topology (in honour of Felix Hausdorff, 1868–1942), VEB Deutsch. VerlagWissensch., Berlin, 1972, 265–278. | pl_PL |
dc.references | I. P. Kornfel'd, Sets of convergence and divergence of functional sequences, Izv. Vysš. Učebn. Zaved. Matematika 4 (1963), 79–88 (in Russian). | pl_PL |
dc.references | P. Kostyrko, T. Šalát, W. Wilczyński, I-convergence, Real Anal. Exchange 26, no. 2 (2000/01), 669–685. | pl_PL |
dc.references | M. Laczkovich, I. Recław, Ideal limits of sequences of continuous functions, Fund. Math. 203, no. 1 (2009), 39–46. | pl_PL |
dc.references | J. S. Lipiński, Sets of points of convergence to infinity of a sequence of continuous functions, Fund. Math. 51 (1962/1963), 35–43 (in Russian). | pl_PL |
dc.references | J. S. Lipiński, Convergence to infinity of a sequence of continuous functions, Dokl. Akad. Nauk SSSR 140 (1961), 752–754 (in Russian) | pl_PL |
dc.references | M. A. Lunina, Sets of convergence and divergence of sequences of real-valued continuous functions on a metric space, Mat. Zametki 17 (1975), 205–217 (in Russian). | pl_PL |
dc.references | K. Mazur, Fσ-ideals and w1w*1-gaps in the Boolean algebras P(w)=I, Fund. Math. 138, no. 2 (1991), 103–111. | pl_PL |
dc.references | D. Meza-Alcántara, Ideals and filters on countable set, Ph.D. thesis, Universidad Nacional Autónoma de México, 2009. | pl_PL |
dc.references | T. Natkaniec, J. Wesołowska, Sets of ideal convergence of sequences of quasicontinuous functions (preprint). | pl_PL |
dc.references | I. Recław, Sets of filter convergence of sequences of continuous functions, J. Math. Anal. Appl. 394, no. 2 (2012), 475–480. | pl_PL |
dc.references | S. Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin, 1982. | pl_PL |
dc.references | W. Sierpiński, Sur l’ensemble des points de convergence d’une suite de fonctions continues, Fund. Math. 2 (1921), 41–49. | pl_PL |
dc.references | S. Solecki, Analytic ideals and their applications, Ann. Pure Appl. Logic 99, no. 1-3 (1999), 51–72. | pl_PL |
dc.references | S. Solecki, Filters and sequences, Fund. Math. 163, no. 3 (2000), 215–228. | pl_PL |
dc.references | M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67, no. 1 (1980), 13–43. | pl_PL |
dc.references | E. K. van Douwen, The integers and topology, Handbook of set-theoretic topology, North-Holland, Amsterdam (1984), 111–167. | pl_PL |
dc.references | J. Wesołowska, Sets of points of convergence of sequences of real functions, Ph.D. thesis, University of Gdańsk, 2001 (in Polish). | pl_PL |
dc.references | J. Wesołowska, On sets of discrete convergence points of sequences of real functions, Real Anal. Exchange 29, no. 1 (2003/04), 107–120. | pl_PL |
dc.contributor.authorEmail | rfilipow@mat.ug.edu.pl | pl_PL |
dc.contributor.authorEmail | mattn@mat.ug.edu.pl | pl_PL |
dc.contributor.authorEmail | pszuca@radix.com.pl | pl_PL |
dc.identifier.doi | 10.18778/7525-971-1.07 | |