Pokaż uproszczony rekord

dc.contributor.authorGyenis, Zalán
dc.date.accessioned2019-01-14T14:03:05Z
dc.date.available2019-01-14T14:03:05Z
dc.date.issued2018
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/26411
dc.description.abstractThe sole purpose of this paper is to give an algebraic characterization, in terms of a superamalgamation property, of a local version of Craig interpolation theorem that has been introduced and studied in earlier papers. We continue ongoing research in abstract algebraic logic and use the framework developed by Andréka–Németi and Sain. en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic;1
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.en_GB
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0en_GB
dc.subjectCraig interpolationen_GB
dc.subjectAlgebraic logicen_GB
dc.subjectSuperamalgamationen_GB
dc.titleAlgebraic Characterization of the Local Craig Interpolation Propertyen_GB
dc.typeArticleen_GB
dc.page.number45-58
dc.contributor.authorAffiliationDepartment of Logic, Jagiellonian University, Kraków Department of Logic, Eötvös University, Budapest
dc.identifier.eissn2449-836X
dc.referencesH. Andréka, I. Németi, I. Sain, Algebraic Logic, [in:] D. M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic Vol. II, Second edition, Kluwer Academic Publishers, 2001, pp. 133–247.en_GB
dc.referencesH. Andréka, I. Németi, I. Sain, Universal Algebraic Logic, Studies in Logic, Springer, due to 2017.en_GB
dc.referencesH. Andréka, Á. Kurucz, I. Németi, I. Sain, Applying algebraic logic; A general methodology, Lecture Notes of the Summer School “Algebraic Logic and the Methodology of Applying it”, Budapest 1994.en_GB
dc.referencesW. J. Blok, D. Pigozzi, Algebraizable logics, Memoirs of the American Mathematical Society, Vol. 77, No. 396, pp. vi+78, 1989.en_GB
dc.referencesW. J. Blok, D. Pigozzi, Abstract Algebraic Logic, Lecture Notes of the Summer School “Algebraic Logic and the Methodology of Applying it”, Budapest 1994.en_GB
dc.referencesW. J. Blok, D. Pigozzi, Local Deduction Theorems in Algebraic Logic, [in:] J. D. Monk, H. Andréka and I. Németi (eds.), Algebraic Logic (Proc. Conf. Budapest 1988), Vol. 54 of Colloq. Math. Soc. János Bolyai, North- Holland, Amsterdam, 1991, pp. 75–109.en_GB
dc.referencesJ. Czelakowski, Logical matrices and the amalgamation property, Studia Logica XLI(4) (1982), pp. 329–342.en_GB
dc.referencesJ. Czelakowski, D. Pigozzi, Amalgamation and Interpolation in abstract algebraic logic, [in:] Models, Algebras, and Proofs, selected papers of the X Latin American symposium on mathematical logic held in Bogotá, Xavier Caicedo and Carlos H. Montenegro (eds.), Lecture Notes in Pure and Applied Mathematics, Vol. 203, Marcel Dekker, Inc., New York, 1999.en_GB
dc.referencesJ. Czelakowski, D. Pigozzi. Fregean logics, Annals of Pure and Applied Logic 127(1/3) (2004), pp. 17–76.en_GB
dc.referencesJ. M. Font, R. Jansana, A comparison of two approaches to the algebraization of logics, Lecture Notes of the Summer School “Algebraic Logic and the Methodology of Applying it”, Budapest 1994.en_GB
dc.referencesJ. M. Font, R. Jansana, On the Sentential Logics Associated with strongly nice and Semi-nice General Logics, Bulletin of the IGPL, Vol. 2, No. 1 (1994), pp. 55–76.en_GB
dc.referencesZ. Gyenis, Interpolation property and homogeneous structures, Logic Journal of IGPL 22(4) (2014), pp. 597–607.en_GB
dc.referencesL. Henkin, J. D. Monk, A. Tarski, Cylindric Algebras Parts I, II, North Holland, Amsterdam, 1971.en_GB
dc.referencesJ. Madarász, Interpolation and Amalgamation, Pushing the Limits. Part I and Part II, Studia Logica, Vol. 61 and 62(3 and 1), (1998 and 1999), pp. 311–345 and pp. 1–19.en_GB
dc.referencesL. L. Maksimova, Amalgamation and interpolation in normal modal logics, Studia Logica L(3/4) (1991), pp. 457–471.en_GB
dc.referencesL. L. Maksimova, Interpolation theorems in modal logics and amalgamable varieties of topoboolean algebras, (in Russian), Algebra i logika 18, 5 (1979), pp. 556–586.en_GB
dc.referencesD. Nyíri, Robinson’s property and amalgamations of higher arities, Mathematical Logic Quarterly, Vol. 62, Issue 4–5 (2016), pp. 427–433.en_GB
dc.referencesD. Pigozzi, Amalgamation, Congruence Extension and Interpolation Properties in Algebras, Algebra Universalis 1(3) (1972), pp. 269–349.en_GB
dc.referencesD. Pigozzi, Fregean algebraic logic, [in:] J. D. Monk, H. Andréka and I. Németi (eds.), Algebraic Logic (Proc. Conf. Budapest 1988), Vol. 54 of Colloq. Math. Soc. János Bolyai, North–Holland, Amsterdam, 1991, pp. 475–502.en_GB
dc.referencesI. Sain, Beth’s and Craig’s properties via epimorphisms and amalgamation in algebraic logic, Algebraic Logic and Universal Algebra in Computer Science, Bergman, Maddux and Pigozzi (eds.), Lecture Notes in Computer Science, Vol. 425, Springer-Verlag, Berlin, 1990, pp. 209–226.en_GB
dc.referencesG. Sági, S. Shelah, On Weak and Strong Interpolation in Algebraic Logics, Journal of Symbolic Logic, Vol. 71, No. 1, (2006), pp. 104–118.en_GB
dc.contributor.authorEmailgyz@renyi.hu
dc.identifier.doi10.18778/0138-0680.47.1.04
dc.relation.volume47en_GB
dc.subject.msc03G27


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.