Show simple item record

dc.contributor.authorWituła, Roman
dc.contributor.authorHetmaniok, Edyta
dc.contributor.authorSłota, Damian
dc.contributor.editorHejduk, Jacek
dc.contributor.editorKowalczyk, Stanisław
dc.contributor.editorPawlak, Ryszard J.
dc.contributor.editorTurowska, Małgorzata
dc.identifier.citationWituła R., Hetmaniok E., Słota D., New properties of the families of convergent and divergent permutations - Part I, [w:] Modern Real Analysis, J. Hejduk, St. Kowalczyk, R.J. Pawlak, M. Turowska (red.), WUŁ, Łódź 2015, doi: 10.18778/7969-663-5.13.pl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofModern Real Analysis;
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.subjectconvergent permutationspl_PL
dc.subjectdivergent permutationspl_PL
dc.titleNew properties of the families of convergent and divergent permutations - Part Ipl_PL
dc.typeBook chapterpl_PL
dc.rights.holder© Copyright by Authors, Łódź 2015; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2015pl_PL
dc.contributor.authorAffiliationSilesian University of Technology, Institute of Mathematicspl_PL
dc.contributor.authorAffiliationSilesian University of Technology, Institute of Mathematicspl_PL
dc.contributor.authorAffiliationSilesian University of Technology, Institute of Mathematicspl_PL
dc.referencesR. P. Agnew, Permutations preserving convergence of series, Proc. Amer. Math. Soc. 6 (1955), 563-564.pl_PL
dc.referencesF. Garibay, P. Greenberg and L. Resendis and J. J. Rivaud, The geometry of sumpreserving permutations, Pacific J. Math. 135 (1988), 313-322.pl_PL
dc.referencesU. C. Guha, On Levi’s theorem on rearrangement of convergent series, Indian J. Math. 9 (1967), 91-93.pl_PL
dc.referencesM. C. Hu, J. K. Wang, On rearrangement of series, Bull. Acad. Sinica 7 (1979), 363-376.pl_PL
dc.referencesA. S. Kronrod, On permutation of terms of numerical series, Mat. Sbornik 18(60) no. 2 (1946), 237-280 (in Russian).pl_PL
dc.referencesF. W. Levi, Rearrangement of convergent series, Duke Math. J. 13 (1946), 579-585.pl_PL
dc.referencesL. Maligranda, Scientific activity of Józef Schreier, Wiadomo´sci Matematyczne 50 no. 1 (2014), 45-68 (in Polish).pl_PL
dc.referencesC. St. J. A. Nash-Williams, D. J. White, An application of network flows to rearrangement of series, J. Lond. Math. Soc., II. Ser. 59 (1999), 637-646.pl_PL
dc.referencesN. Obata, A note on certain permutation groups in the infinite dimensional rotation group, Nagoya Math. J. 109 (1988), 91-107.pl_PL
dc.referencesP. A. B. Pleasants, Rearrangements that preserve convergence, J. London Math. Soc. 15 (1977), 134-142.pl_PL
dc.referencesM. Ali Sarigol, Permutation preserving convergence and divergence of series, Bull. Inst. Math. Acad. Sinica 16 (1988), 221-227.pl_PL
dc.referencesM. Ali Sarigol, On absolute equivalence of permutatio functions, Bull. Inst. Math. Acad. Sinica 19 (1991), 69-74.pl_PL
dc.referencesP. Schaefer, Sum-preserving rearrangements of infinite series, Amer. Math. Monthly 88 (1981), 33-40.pl_PL
dc.referencesJ. H. Smith, Rearrangements of conditionally convergent real series with preassigned cycle type, Proc. American Math. Soc. 1 (1975), 167-170.pl_PL
dc.referencesG. S. Stoller, The convergence-preserving rearrangements of real infinite series, Pacific J. Math. 73 (1977), 227-231.pl_PL
dc.referencesR. Wituła, Algebraic and set-theoretical properties of some subsets of families of convergent and divergent permutations, Tatra Mt. Math. Publ. 55 (2013), 27-36.pl_PL
dc.referencesR. Wituła, Convergence - Preserving Functions, Nieuw Arch. voor Wisk 13 (1995), 31-35.pl_PL
dc.referencesR. Wituła, Decompositions of permutations of N with respect to divergent permutations, in Traditional and Present-day Topics in Real Analysis (monograph dedicated to Professor Jan Stanisław Lipiński), Ed. by Małgorzata Filipczak, Elżbieta Wagner- Bojakowska, Łódź University Press, Łódź (2013), 473-490.pl_PL
dc.referencesR.Wituła, On the convergent and divergent permutations, PhD thesis, Katowice 1997 (in Polish).pl_PL
dc.referencesR. Wituła, On the set of limit points of the partial sums of series rearranged by a given divergent permutation, J. Math. Anal. Appl. 362 (2010), 542-552.pl_PL
dc.referencesR. Wituła, Permutations preserving the convergence or the sum of series - a survey, Monograph on the occasion of 100th birthday anniversary of Zygmunt Zahorski, Ed. by Roman Wituła, Damian Słota, Waldemar Hołubowski, Silesian University of Technology Press, Gliwice (2015), 169-190.pl_PL
dc.referencesR. Wituła, Permutation preserving the sum of rearranged real series, Centr. Eur. J. Math. 11, no. 5 (2013), 956-965.pl_PL
dc.referencesR. Wituła, The family F of permutations of N, Math. Slovaca, doi: 10.2478/s12175- 013-0196-0 (in press).pl_PL
dc.referencesR.Wituła, The Riemann Derangement Theorem and divergent permutation, Tatra Mt. Math. Publ. 52 (2012), 75-82.pl_PL
dc.referencesR. Wituła, The Riemann theorem and divergent permutations, Colloq. Math. LXIX (1995), 275-287.pl_PL
dc.referencesR. Wituła, E. Hetmaniok, D. Słota, On commutation properties on the composition relation of convergent and divergent permutations (Part I), Tatra Mt. Math. Publ. 58 (2014), 13-22.pl_PL
dc.referencesR.Wituła, E. Hetmaniok, D. Słota, Some remarks about the group G generated by the family of convergent permutations (sent to Demonstratio Math., currently in review).pl_PL
dc.referencesR. Wituła, D. Słota, The convergence classes of divergent permutations, Demonstratio Math. 42 (2009), 781-796.pl_PL

Files in this item


This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska