Show simple item record

dc.contributor.authorBuszkowski, Wojciech
dc.date.accessioned2018-04-24T08:00:09Z
dc.date.available2018-04-24T08:00:09Z
dc.date.issued2017
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/24563
dc.description.abstractIn [5] we study Nonassociative Lambek Calculus (NL) augmented with De Morgan negation, satisfying the double negation and contraposition laws. This logic, introduced by de Grooté and Lamarche [10], is called Classical Non-Associative Lambek Calculus (CNL). Here we study a weaker logic InNL, i.e. NL with two involutive negations. We present a one-sided sequent system for InNL, admitting cut elimination. We also prove that InNL is PTIME.en_GB
dc.description.sponsorshipZadanie „ Wdrożenie platformy Open Journal System dla czasopisma „ Bulletin of the Section of Logic” finansowane w ramach umowy 948/P-DUN/2016 ze środków Ministra Nauki i Szkolnictwa Wyższego przeznaczonych na działalność upowszechniającą naukę.en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic;1/2
dc.subjectnonassociative Lambek calculusen_GB
dc.subjectlinear logicen_GB
dc.subjectsequent systemen_GB
dc.subjectcut eliminationen_GB
dc.subjectPTIME complexityen_GB
dc.titleInvolutive Nonassociative Lambek Calculus: Sequent Systems and Complexityen_GB
dc.typeArticleen_GB
dc.rights.holder© Copyright by Authors, Łódź 2017; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2017en_GB
dc.page.number[75]-91
dc.contributor.authorAffiliationAdam Mickiewicz University, Faculty of Mathematics and Computer Science, Poznań, Poland
dc.identifier.eissn2449-836X
dc.referencesV. M. Abrusci, Phase semantics and sequent calculus for pure noncommutative classical linear propositional logic, Journal of Symbolic Logic 56 (1991), pp. 1403–1451.en_GB
dc.referencesA. Bastenhof, Categorial Symmetry, Ph.D. Thesis, University of Utrecht (2013).en_GB
dc.referencesW. Buszkowski, Lambek Calculus with Nonlogical Axioms, [in:] Casadio, C., Scott, P.J. and Seely, R.A.S., Language and Grammar. Studies in Mathematical Linguistics and Natural Language. CSLI Lecture Notes 168 (2005), pp. 77–93.en_GB
dc.referencesW. Buszkowski, An Interpretation of Full Lambek Calculus in Its Variant without Empty Antecedents of Sequents, [in:] Asher, N. and Soloviev, S. (eds.), Logical Aspects of Computational Linguistics, Lecture Notes in Computer Science, vol. 8535 (2014), Springer, pp. 30–43.en_GB
dc.referencesW. Buszkowski, On Classical Nonassociative Lambek Calculus, [in:] Amblard, M,, de Groote, Ph., Pogodalla, S., and Retoré, C. (eds.), Logical Aspects of Computational Linguistics, Lecture Notes in Computer Science, vol. 10054 (2016), Springer, pp. 68–84.en_GB
dc.referencesW. Buszkowski, Phase Spaces for Involutive Nonassociative Lambek Calculus, [in:] Loukanova, R. and Liefke, K. (eds.), Proc. Logic and Algorithms in Computational Linguistics (LACompLing 2017), Stockholm University, (2017), pp. 21–45.en_GB
dc.referencesN. Galatos and P. Jipsen, Residuated frames with applications to decidability, Transactions of American Mathematical Society 365 (2013), pp. 1219–1249.en_GB
dc.referencesN. Galatos, P. Jipsen, T. Kowalski and H. Ono, Residuated Lattices. An Algebraic Glimpse at Substructural Logics, Elsevier (2007).en_GB
dc.referencesJ.-Y. Girard, Linear logic, Theoretical Computer Science 50 (1987), pp. 1–102.en_GB
dc.referencesPh. de Groote and F. Lamarche, Classical Non-Associative Lambek Calculus, Studia Logica 71/3 (2002), pp. 355–388.en_GB
dc.referencesJ. Lambek, On the calculus of syntactic types, [in:] Jakobson, R. (ed.) Structure of Language and Its Mathematical Aspects, pp. 166–178. AMS, Providence (1961).en_GB
dc.referencesJ. Lambek, Cut elimination for classical bilinear logic, Fundamenta Informaticae 22 (1995), pp. 53–67.en_GB
dc.referencesJ. Lambek, Some lattice models of bilinear logic, Algebra Universalis 34 (1995), pp. 541–550.en_GB
dc.referencesG.Malinowski,Many-valued Logics, Oxford Logic Guides 25, The Clarendon Press, Oxford University Press, 1993.en_GB
dc.referencesM. Okada and K. Terui, The finite model property for various fragments of intuitionistic linear logic, Journal of Symbolic Logic 64 (1999), pp. 790–802.en_GB
dc.referencesM. Pentus, Lambek calculuc is NP-complete, Theoretical Computer Science 357 (2006), pp. 186–201.en_GB
dc.references en_GB
dc.contributor.authorEmailbuszko@amu.edu.pl
dc.identifier.doi10.18778/0138-0680.46.1.2.07
dc.relation.volume46en_GB


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record