Show simple item record

dc.contributor.authorIndrzejczak, Andrzej
dc.date.accessioned2018-04-24T08:00:07Z
dc.date.available2018-04-24T08:00:07Z
dc.date.issued2017
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/24557
dc.description.abstractHypersequent calculi (HC) can formalize various non-classical logics. In [9] we presented a non-commutative variant of HC for the weakest temporal logic of linear frames Kt4.3 and some its extensions for dense and serial flow of time. The system was proved to be cut-free HC formalization of respective temporal logics by means of Schütte/Hintikka-style semantical argument using models built from saturated hypersequents. In this paper we present a variant of this calculus for Kt4.3 with a constructive syntactical proof of cut elimination.en_GB
dc.description.sponsorshipZadanie „ Wdrożenie platformy Open Journal System dla czasopisma „ Bulletin of the Section of Logic” finansowane w ramach umowy 948/P-DUN/2016 ze środków Ministra Nauki i Szkolnictwa Wyższego przeznaczonych na działalność upowszechniającą naukę.en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic;1/2
dc.subjecttemporal logicen_GB
dc.subjectlinear timeen_GB
dc.subjecthypersequent calculusen_GB
dc.subjectcut eliminationen_GB
dc.titleCut Elimination Theorem for Non-Commutative Hypersequent Calculusen_GB
dc.typeArticleen_GB
dc.rights.holder© Copyright by Authors, Łódź 2017; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2017en_GB
dc.page.number[135]-149
dc.contributor.authorAffiliationUniversity of Łódź, Department of Logic, Lindleya 3/5, Łódź
dc.identifier.eissn2449-836X
dc.referencesA. Avron, A Constructive Analysis of RM, Journal of Symbolic Logic 52 (1987), pp. 939–951.en_GB
dc.referencesA. Avron, Using Hypersequents in Proof Systems for Non-Classical Logics, Annals of Mathematics and Artificial Intelligence 4 (1991), pp. 225–248.en_GB
dc.referencesA. Avron, The Method of Hypersequents in the Proof Theory of Propositional Non-Classical Logics, [in:] W. Hodges et al. (eds.), Logic: From Foundations to Applications, Oxford Science Publication, Oxford, 1996, pp. 1–32.en_GB
dc.referencesM. Baaz, A. Ciabattoni and C. G. Fermüller, Hypersequent Calculi for Gödel Logics – a Survey, Journal of Logic and Computation 13 (2003), pp. 1–27.en_GB
dc.referencesK. Bednarska and A. Indrzejczak, Hypersequent Calculi for S5 – the Methods of Cut-elimination, Logic and Logical Philosophy 24/3 (2015), pp. 277–311.en_GB
dc.referencesA. Ciabattoni, N. Galatos and K. Terui, From axioms to analytic rules in nonclassical logics, LICS (2008), pp. 229–240.en_GB
dc.referencesA. Indrzejczak, Cut-free Hypersequent Calculus for S4.3, Bulletin of the Section of Logic 41:1/2 (2012), pp. 89–104.en_GB
dc.referencesA. Indrzejczak, Eliminability of Cut in Hypersequent Calculi for some Modal Logics of Linear Frames, Information Processing Letters 115/2 (2015), pp. 75–81.en_GB
dc.referencesA. Indrzejczak, Linear Time in Hypersequent Framework, The Bulletin of Symbolic Logic 22/1 (2016), pp. 121–144.en_GB
dc.referencesO. Lahav, From Frame Properties to Hypersequent Rules in Modal Logics, LICS 2013.en_GB
dc.referencesB. Lellmann, Axioms vs hypersequent rules with context restrictions, [in:] Proceedings of IJCAR, Springer 2014, pp. 307–321.en_GB
dc.referencesB. Lellmann, Linear Nested Sequents, 2-Sequents and Hypersequents, [in:] TABLEAUX, Springer 2015, pp. 135–150.en_GB
dc.referencesH. Kurokawa, Hypersequent Calculi for Modal Logics Extending S4, [in:] New Frontiers in Artificial Intelligence (2013), pp. 51–68, Springer, 2014.en_GB
dc.referencesG. Metcalfe, N. Olivetti and D. Gabbay, Proof Theory for Fuzzy Logics, Springer 2008.en_GB
dc.referencesF. Poggiolesi, A Cut-free Simple Sequent Calculus for Modal Logic S5, Review of Symbolic Logic 1 (2008), pp. 3–15.en_GB
dc.referencesF. Poggiolesi, Gentzen Calculi for Modal Propositional Logics, Springer, 2011.en_GB
dc.referencesG. Pottinger, Uniform Cut-free formulations of T, S4 and S5 (abstract), Journal of Symbolic Logic 48 (1983), p. 900.en_GB
dc.referencesK. Schütte, Proof Theory, Springer, 1977.en_GB
dc.contributor.authorEmailandrzej.indrzejczak@filozof.uni.lodz.pl
dc.identifier.doi10.18778/0138-0680.46.1.2.10
dc.relation.volume46en_GB


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record