dc.contributor.author | Balcerzak, Marek | |
dc.contributor.author | Filipczak, Małgorzata | |
dc.date.accessioned | 2018-01-08T08:56:28Z | |
dc.date.available | 2018-01-08T08:56:28Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0208-6204 | |
dc.identifier.uri | http://hdl.handle.net/11089/23855 | |
dc.description.abstract | We give a short survey of results on ideal convergence with some
applications. In particular, we present a contribution of mathematicians from Łódź to these investigations during the recent 16 years. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | University of Łódź Press | pl_PL |
dc.relation.ispartofseries | Acta Universitatis Lodziensis. Folia Mathematica;19 | |
dc.subject | ideal on N | pl_PL |
dc.subject | ideal convergence | pl_PL |
dc.title | Ideal Convergence of Sequences and Some of its Applications | pl_PL |
dc.type | Article | pl_PL |
dc.rights.holder | © 2017 for University of Łódź Press | pl_PL |
dc.page.number | 3-8 | pl_PL |
dc.contributor.authorAffiliation | Institute of Mathematics, Łódź University of Technology, Wólczańska 215, 93-005 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Faculty of Mathematics and Computer Sciences, Łódź University, ul. Banacha 22, 90-938 Łódź, Poland | pl_PL |
dc.identifier.eissn | 2450-7652 | |
dc.references | M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328 (2007), pp. 715–729. | pl_PL |
dc.references | M. Balcerzak, P. Das, M. Filipczak, J. Swaczyna, Generalized kinds of density and the associated ideals, Acta Math. Hungar., 147 (2015), pp. 97–115. | pl_PL |
dc.references | M. Balcerzak, Sz. G l¸ab, J. Swaczyna, Ideal invariant injections, J. Math. Anal. Appl., 445 (2017), pp. 423–442. | pl_PL |
dc.references | K. Dems, On I-Cauchy sequences, Real Anal. Exchange, 30 (2004/2005), pp. 123– 128. | pl_PL |
dc.references | I. Farah, Analytic quotients. Theory of lifting for quotients over analytic ideals on integers, Mem. Amer. Math. Soc. 148 (2000). | pl_PL |
dc.references | H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), pp. 241–244. | pl_PL |
dc.references | R. Filipów, N. Mrożek, I. Recław, P. Szuca, Ideal convergence of bounded sequences, J. Symb. Logic 72 (2007), pp. 501–512. | pl_PL |
dc.references | R. Filipów, T. Natkaniec, P. Szuca, Ideal cnvergence, in: Traditional and presentday topics in real analysis. Dedicated to Professor Jan Lipiński, (M. Filipczak, E. Wagner-Bojakowska es.), Łódź University Press, Łódź 2013, pp. 69–91. | pl_PL |
dc.references | R. Filipów, P. Szuca, Rearrangement of conditionally convergent series on a small set, J. Math. Anal. Appl. 362 (2010), pp. 64–71. | pl_PL |
dc.references | R. Filipów, P. Szuca, Three kinds of convergence and the associated I-Baire classes, J. Math. Anal. Appl. 391 (2012), pp. 1–9. | pl_PL |
dc.references | J. A. Fridy, On statistical convergence, Analysis 5 (1985), pp. 301–313. | pl_PL |
dc.references | G. Horbaczewska, A. Skalski, The Banach principle for ideal convergence in the classical and noncommutative context, J. Math. Anal. Appl. 342 (2008), pp. 1332– 1341. | pl_PL |
dc.references | W. Just, A. Krawczyk, On certain Boolean algebras P(ω)/I, Trans. Amer. Math. Soc. 285 (1984), pp. 411–429. | pl_PL |
dc.references | V. Kadets, A. Leonov, Dominated convergence and Egorov theorems for filter convergence, J. Math. Phys. Anal. Geom. 3 (2007), pp. 196–212. | pl_PL |
dc.references | M. Katětov, Products of filters, Comment. Math. Univ. Carolinae 9 (1968), pp. 173–189. | pl_PL |
dc.references | P. Klinga, Rearranging series of vectors on a small set, 424 (2015), 966–974 | pl_PL |
dc.references | A. Komisarski, Pointwise I-convergence and I-convergence in measure of sequences of functions, J. Math. Anal. Appl. 340 (2008), pp. 770–779 | pl_PL |
dc.references | P. Kostyrko, T. Salat, W. Wilczyński, ˇ I-convergence, Real Anal. Exchange 26 (2000-2001), pp. 669–685. | pl_PL |
dc.references | A. Kwela, J. Tryba, Homogeneous ideals on countable sets, Acta Math. Hungar., accepted. | pl_PL |
dc.references | M. Laczkovich, I. Recław, Ideal limits of sequences of continuous functions, Fund. Math. 203 (2009), pp. 39–46. | pl_PL |
dc.references | K. Mazur, Fσ-ideals and ω1ω ∗ 1 -gaps in the Boolean algebras P(ω)/I, Fund. Math. 138 (1991), pp. 103–111. | pl_PL |
dc.references | D. Meza-Alcantara, Ideals and filters on countable sets, Ph.D. thesis, Univ. Nacional Autonoma de Mexico, 2009. | pl_PL |
dc.references | N. Mrożek, Ideal version of Egorov’s theorem for analytic P-ideals, J. Math. Anal. Appl. 349 (2009), pp. 452–458. | pl_PL |
dc.references | T. Natkaniec, P. Szuca, On the ideal convergence of sequences of quasicontinuous functions, Fund. Math. 232 (2016), 269–280. | pl_PL |
dc.references | F. Nurrey, W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000), pp. 513–527. | pl_PL |
dc.references | J. C. Oxtoby, Measure and category, Springer, New York, 1980. | pl_PL |
dc.references | T. Salat, On statistically convergent sequences of real numbers, Mat. Slovaca 30 (1980), pp. 139-150. | pl_PL |
dc.references | I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), pp. 361–375. | pl_PL |
dc.references | S. Solecki, Analytic ideals and their applications, Ann. Pure Appl. Logic 99 (1999), pp. 51–72. | pl_PL |
dc.references | W. Wilczyński, On Riemann derangement theorem, S lup. Pr. Mat.-Fiz. 4 (2007), pp. 79–82. | pl_PL |
dc.contributor.authorEmail | marek.balcerzak@p.lodz.pl | pl_PL |
dc.contributor.authorEmail | malfil@math.uni.lodz.pl | pl_PL |
dc.relation.volume | 1 | pl_PL |