Pokaż uproszczony rekord

dc.contributor.authorBalcerzak, Marek
dc.contributor.authorFilipczak, Małgorzata
dc.date.accessioned2018-01-08T08:56:28Z
dc.date.available2018-01-08T08:56:28Z
dc.date.issued2017
dc.identifier.issn0208-6204
dc.identifier.urihttp://hdl.handle.net/11089/23855
dc.description.abstractWe give a short survey of results on ideal convergence with some applications. In particular, we present a contribution of mathematicians from Łódź to these investigations during the recent 16 years.pl_PL
dc.language.isoenpl_PL
dc.publisherUniversity of Łódź Presspl_PL
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Mathematica;19
dc.subjectideal on Npl_PL
dc.subjectideal convergencepl_PL
dc.titleIdeal Convergence of Sequences and Some of its Applicationspl_PL
dc.typeArticlepl_PL
dc.rights.holder© 2017 for University of Łódź Presspl_PL
dc.page.number3-8pl_PL
dc.contributor.authorAffiliationInstitute of Mathematics, Łódź University of Technology, Wólczańska 215, 93-005 Łódź, Polandpl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Computer Sciences, Łódź University, ul. Banacha 22, 90-938 Łódź, Polandpl_PL
dc.identifier.eissn2450-7652
dc.referencesM. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328 (2007), pp. 715–729.pl_PL
dc.referencesM. Balcerzak, P. Das, M. Filipczak, J. Swaczyna, Generalized kinds of density and the associated ideals, Acta Math. Hungar., 147 (2015), pp. 97–115.pl_PL
dc.referencesM. Balcerzak, Sz. G l¸ab, J. Swaczyna, Ideal invariant injections, J. Math. Anal. Appl., 445 (2017), pp. 423–442.pl_PL
dc.referencesK. Dems, On I-Cauchy sequences, Real Anal. Exchange, 30 (2004/2005), pp. 123– 128.pl_PL
dc.referencesI. Farah, Analytic quotients. Theory of lifting for quotients over analytic ideals on integers, Mem. Amer. Math. Soc. 148 (2000).pl_PL
dc.referencesH. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), pp. 241–244.pl_PL
dc.referencesR. Filipów, N. Mrożek, I. Recław, P. Szuca, Ideal convergence of bounded sequences, J. Symb. Logic 72 (2007), pp. 501–512.pl_PL
dc.referencesR. Filipów, T. Natkaniec, P. Szuca, Ideal cnvergence, in: Traditional and presentday topics in real analysis. Dedicated to Professor Jan Lipiński, (M. Filipczak, E. Wagner-Bojakowska es.), Łódź University Press, Łódź 2013, pp. 69–91.pl_PL
dc.referencesR. Filipów, P. Szuca, Rearrangement of conditionally convergent series on a small set, J. Math. Anal. Appl. 362 (2010), pp. 64–71.pl_PL
dc.referencesR. Filipów, P. Szuca, Three kinds of convergence and the associated I-Baire classes, J. Math. Anal. Appl. 391 (2012), pp. 1–9.pl_PL
dc.referencesJ. A. Fridy, On statistical convergence, Analysis 5 (1985), pp. 301–313.pl_PL
dc.referencesG. Horbaczewska, A. Skalski, The Banach principle for ideal convergence in the classical and noncommutative context, J. Math. Anal. Appl. 342 (2008), pp. 1332– 1341.pl_PL
dc.referencesW. Just, A. Krawczyk, On certain Boolean algebras P(ω)/I, Trans. Amer. Math. Soc. 285 (1984), pp. 411–429.pl_PL
dc.referencesV. Kadets, A. Leonov, Dominated convergence and Egorov theorems for filter convergence, J. Math. Phys. Anal. Geom. 3 (2007), pp. 196–212.pl_PL
dc.referencesM. Katětov, Products of filters, Comment. Math. Univ. Carolinae 9 (1968), pp. 173–189.pl_PL
dc.referencesP. Klinga, Rearranging series of vectors on a small set, 424 (2015), 966–974pl_PL
dc.referencesA. Komisarski, Pointwise I-convergence and I-convergence in measure of sequences of functions, J. Math. Anal. Appl. 340 (2008), pp. 770–779pl_PL
dc.referencesP. Kostyrko, T. Salat, W. Wilczyński, ˇ I-convergence, Real Anal. Exchange 26 (2000-2001), pp. 669–685.pl_PL
dc.referencesA. Kwela, J. Tryba, Homogeneous ideals on countable sets, Acta Math. Hungar., accepted.pl_PL
dc.referencesM. Laczkovich, I. Recław, Ideal limits of sequences of continuous functions, Fund. Math. 203 (2009), pp. 39–46.pl_PL
dc.referencesK. Mazur, Fσ-ideals and ω1ω ∗ 1 -gaps in the Boolean algebras P(ω)/I, Fund. Math. 138 (1991), pp. 103–111.pl_PL
dc.referencesD. Meza-Alcantara, Ideals and filters on countable sets, Ph.D. thesis, Univ. Nacional Autonoma de Mexico, 2009.pl_PL
dc.referencesN. Mrożek, Ideal version of Egorov’s theorem for analytic P-ideals, J. Math. Anal. Appl. 349 (2009), pp. 452–458.pl_PL
dc.referencesT. Natkaniec, P. Szuca, On the ideal convergence of sequences of quasicontinuous functions, Fund. Math. 232 (2016), 269–280.pl_PL
dc.referencesF. Nurrey, W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000), pp. 513–527.pl_PL
dc.referencesJ. C. Oxtoby, Measure and category, Springer, New York, 1980.pl_PL
dc.referencesT. Salat, On statistically convergent sequences of real numbers, Mat. Slovaca 30 (1980), pp. 139-150.pl_PL
dc.referencesI. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), pp. 361–375.pl_PL
dc.referencesS. Solecki, Analytic ideals and their applications, Ann. Pure Appl. Logic 99 (1999), pp. 51–72.pl_PL
dc.referencesW. Wilczyński, On Riemann derangement theorem, S lup. Pr. Mat.-Fiz. 4 (2007), pp. 79–82.pl_PL
dc.contributor.authorEmailmarek.balcerzak@p.lodz.plpl_PL
dc.contributor.authorEmailmalfil@math.uni.lodz.plpl_PL
dc.relation.volume1pl_PL


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord