dc.contributor.author | Spodzieja, Stanisław | |
dc.contributor.author | Szlachcińska, Anna | |
dc.contributor.editor | Krasiński, Tadeusz | |
dc.contributor.editor | Spodzieja, Stanisław | |
dc.date.accessioned | 2017-12-28T09:26:28Z | |
dc.date.available | 2017-12-28T09:26:28Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Spodzieja S., Szlachcińska A., Łojasiewicz exponent of overdetermined semialgebraic mappings, [in:] Krasiński T., Spodzieja S. (eds), Analytic and Algebraic Geometry2, Łódź University Press, Łódź 2017, p. 179-188, doi: 10.18778/8088-922-4.20 | pl_PL |
dc.identifier.isbn | 978-83-8088-922-4 | |
dc.identifier.uri | http://hdl.handle.net/11089/23781 | |
dc.description.abstract | We prove that both local and global Łojasiewicz exponent of a continuous overdetermined semialgebraic mapping F : X → Rᵐ on a closed semialgebraic set X ⊂ Rⁿ (i.e. m > dimX) are equal to the Łojasiewicz exponent of the composition L ₒ F : X → Rᵏ for the generic linear mapping L : Rᵐ → Rᵏ, where k = dimX. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Łódź University Press | pl_PL |
dc.relation.ispartof | Krasiński T., Spodzieja S. (eds), Analytic and Algebraic Geometry 2, Łódź University Press, Łódź 2017; | |
dc.rights | Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/pl/ | * |
dc.title | Łojasiewicz exponent of overdetermined semialgebraic mappings | pl_PL |
dc.type | Book chapter | pl_PL |
dc.rights.holder | © Copyright by Authors, Łódź 2017; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2017 | pl_PL |
dc.page.number | 179-188 | pl_PL |
dc.contributor.authorAffiliation | Faculty of Mathematics and Computer Science, University of Łódź, ul. S. Banacha 22, 90-238 Łódź, Poland | pl_PL |
dc.identifier.eisbn | 978-83-8088-923-1 | |
dc.references | R. Achilles, P. Tworzewski and T. Winiarski, On improper isolated intersection in complex analytic geometry. Ann. Polon. Math. 51 (1990), 21–36. | pl_PL |
dc.references | J. Bochnak, M. Coste and M-F. Roy, Real algebraic geometry. Springer-Verlag, Berlin, 1998. | pl_PL |
dc.references | J. Bochnak and J.J. Risler, Sur les exposants de Łojasiewicz. Comment. Math. Helv. 50 (1975), 493–507. | pl_PL |
dc.references | J. Chądzyński, On proper polynomial mappings. Bull. Polish Acad. Sci. Math. 31 (1983), 115–120. | pl_PL |
dc.references | E. Cygan, A note on separation of algebraic sets and the Łojasiewicz exponent for polynomial mappings. Bull. Sci. Math. 129 (2005), no. 2, 139–147. | pl_PL |
dc.references | E. Cygan, T. Krasiński and P. Tworzewski, Separation of algebraic sets and the Łojasiewicz exponent of polynomial mappings. Invent. Math. 136 (1999), no. 1, 75–87. | pl_PL |
dc.references | Z. Jelonek, On the effective Nullstellensatz. Invent. Math. 162 (2005), no. 1, 1–17 | pl_PL |
dc.references | Z. Jelonek, On the Łojasiewicz exponent. Hokkaido Math. J. 35 (2006), no. 2, 471–485. | pl_PL |
dc.references | S. Ji, J. Kollár and B. Shiffman, A global Łojasiewicz inequality for algebraic varieties. Trans. Amer. Math. Soc. 329 (1992), 813–818. | pl_PL |
dc.references | J. Kollár, Sharp effective Nullstellensatz. J. Amer. Math. Soc. 1 (1988), 963–975. | pl_PL |
dc.references | J. Kollár, An effective Łojasiewicz inequality for real polynomials. Period. Math. Hungar. 38 (1999), no. 3, 213–221. | pl_PL |
dc.references | K. Kurdyka, T. Mostowski and A. Parusiński, Proof of the gradient conjecture of R. Thom. Ann. of Math. (2) 152 (2000), no. 3, 763–792. | pl_PL |
dc.references | K. Kurdyka and S. Spodzieja, Convexifying Positive Polynomials and Sums of Squares Approximation. SIAM J. Optim. 25 (2015), no. 4, 2512–2536. | pl_PL |
dc.references | M. Lejeune-Jalabert and B. Teissier, Clôture intégrale des idéaux et équisingularité. Centre de Mathématiques Ecole Polytechnique Palaiseau, 1974. | pl_PL |
dc.references | A. Płoski, Multiplicity and the Łojasiewicz exponent. Banach Center Publications 20,Warsaw (1988), 353–364. | pl_PL |
dc.references | T. Rodak and S. Spodzieja, Effective formulas for the Łojasiewicz exponent at infinity. J. Pure Appl. Algebra 213 (2009), 1816–1822. | pl_PL |
dc.references | T. Rodak and S. Spodzieja, Effective formulas for the local Łojasiewicz exponent. Math. Z. 268 (2011), 37–44. | pl_PL |
dc.references | T. Rodak and S. Spodzieja, Łojasiewicz exponent near the fibre of a mapping. Proc. Amer. Math. Soc. 139 (2011), 1201–1213. | pl_PL |
dc.references | T. Rodak and S. Spodzieja, Equivalence of mappings at infinity. Bull. Sci. Math. 136 (2012), no. 6, 679–686. | pl_PL |
dc.references | S. Spodzieja, O włóknach odwzorowań wielomianowych. Materials of the XIX Conference of Complex Analytic and Algebraic Geometry, Publisher University of Lodz, Lodz, (2001), 23–37 (in polish). | pl_PL |
dc.references | S. Spodzieja, The Łojasiewicz exponent at infinity for overdetermined polynomial mappings. Ann. Polon. Math. 78 (2002), 1–10. | pl_PL |
dc.references | S. Spodzieja, Multiplicity and the Łojasiewicz exponent. Ann. Polon. Math. 73 (2000), 257–267 | pl_PL |
dc.references | S. Spodzieja, The Łojasiewicz exponent of subanalytic sets. Ann. Polon. Math. 87 (2005), 247–263. | pl_PL |
dc.references | S. Spodzieja and A. Szlachcińska, Łojasiewicz exponent of overdetermined mappings. Bull. Pol. Acad. Sci. Math. 61 (2013), no. 1, 27–34. | pl_PL |
dc.references | B. Teissier, Variétés polaires. I. Invariants polaires des singularités d’hypersurfaces. Invent. Math. 40 (1977), no. 3, 267–292. | pl_PL |
dc.references | H. Whitney, Tangents to an analytic variety. Ann. of Math. 81 (1965), 496–549. | pl_PL |
dc.contributor.authorEmail | spodziej@math.uni.lodz.pl | pl_PL |
dc.contributor.authorEmail | anna_loch@wp.pl | pl_PL |
dc.identifier.doi | 10.18778/8088-922-4.20 | |