Pokaż uproszczony rekord

dc.contributor.authorSpodzieja, Stanisław
dc.contributor.authorSzlachcińska, Anna
dc.contributor.editorKrasiński, Tadeusz
dc.contributor.editorSpodzieja, Stanisław
dc.date.accessioned2017-12-28T09:26:28Z
dc.date.available2017-12-28T09:26:28Z
dc.date.issued2017
dc.identifier.citationSpodzieja S., Szlachcińska A., Łojasiewicz exponent of overdetermined semialgebraic mappings, [in:] Krasiński T., Spodzieja S. (eds), Analytic and Algebraic Geometry2, Łódź University Press, Łódź 2017, p. 179-188, doi: 10.18778/8088-922-4.20pl_PL
dc.identifier.isbn978-83-8088-922-4
dc.identifier.urihttp://hdl.handle.net/11089/23781
dc.description.abstractWe prove that both local and global Łojasiewicz exponent of a continuous overdetermined semialgebraic mapping F : X → Rᵐ on a closed semialgebraic set X ⊂ Rⁿ (i.e. m > dimX) are equal to the Łojasiewicz exponent of the composition L ₒ F : X → Rᵏ for the generic linear mapping L : Rᵐ → Rᵏ, where k = dimX.pl_PL
dc.language.isoenpl_PL
dc.publisherŁódź University Presspl_PL
dc.relation.ispartofKrasiński T., Spodzieja S. (eds), Analytic and Algebraic Geometry 2, Łódź University Press, Łódź 2017;
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.titleŁojasiewicz exponent of overdetermined semialgebraic mappingspl_PL
dc.typeBook chapterpl_PL
dc.rights.holder© Copyright by Authors, Łódź 2017; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2017pl_PL
dc.page.number179-188pl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Computer Science, University of Łódź, ul. S. Banacha 22, 90-238 Łódź, Polandpl_PL
dc.identifier.eisbn978-83-8088-923-1
dc.referencesR. Achilles, P. Tworzewski and T. Winiarski, On improper isolated intersection in complex analytic geometry. Ann. Polon. Math. 51 (1990), 21–36.pl_PL
dc.referencesJ. Bochnak, M. Coste and M-F. Roy, Real algebraic geometry. Springer-Verlag, Berlin, 1998.pl_PL
dc.referencesJ. Bochnak and J.J. Risler, Sur les exposants de Łojasiewicz. Comment. Math. Helv. 50 (1975), 493–507.pl_PL
dc.referencesJ. Chądzyński, On proper polynomial mappings. Bull. Polish Acad. Sci. Math. 31 (1983), 115–120.pl_PL
dc.referencesE. Cygan, A note on separation of algebraic sets and the Łojasiewicz exponent for polynomial mappings. Bull. Sci. Math. 129 (2005), no. 2, 139–147.pl_PL
dc.referencesE. Cygan, T. Krasiński and P. Tworzewski, Separation of algebraic sets and the Łojasiewicz exponent of polynomial mappings. Invent. Math. 136 (1999), no. 1, 75–87.pl_PL
dc.referencesZ. Jelonek, On the effective Nullstellensatz. Invent. Math. 162 (2005), no. 1, 1–17pl_PL
dc.referencesZ. Jelonek, On the Łojasiewicz exponent. Hokkaido Math. J. 35 (2006), no. 2, 471–485.pl_PL
dc.referencesS. Ji, J. Kollár and B. Shiffman, A global Łojasiewicz inequality for algebraic varieties. Trans. Amer. Math. Soc. 329 (1992), 813–818.pl_PL
dc.referencesJ. Kollár, Sharp effective Nullstellensatz. J. Amer. Math. Soc. 1 (1988), 963–975.pl_PL
dc.referencesJ. Kollár, An effective Łojasiewicz inequality for real polynomials. Period. Math. Hungar. 38 (1999), no. 3, 213–221.pl_PL
dc.referencesK. Kurdyka, T. Mostowski and A. Parusiński, Proof of the gradient conjecture of R. Thom. Ann. of Math. (2) 152 (2000), no. 3, 763–792.pl_PL
dc.referencesK. Kurdyka and S. Spodzieja, Convexifying Positive Polynomials and Sums of Squares Approximation. SIAM J. Optim. 25 (2015), no. 4, 2512–2536.pl_PL
dc.referencesM. Lejeune-Jalabert and B. Teissier, Clôture intégrale des idéaux et équisingularité. Centre de Mathématiques Ecole Polytechnique Palaiseau, 1974.pl_PL
dc.referencesA. Płoski, Multiplicity and the Łojasiewicz exponent. Banach Center Publications 20,Warsaw (1988), 353–364.pl_PL
dc.referencesT. Rodak and S. Spodzieja, Effective formulas for the Łojasiewicz exponent at infinity. J. Pure Appl. Algebra 213 (2009), 1816–1822.pl_PL
dc.referencesT. Rodak and S. Spodzieja, Effective formulas for the local Łojasiewicz exponent. Math. Z. 268 (2011), 37–44.pl_PL
dc.referencesT. Rodak and S. Spodzieja, Łojasiewicz exponent near the fibre of a mapping. Proc. Amer. Math. Soc. 139 (2011), 1201–1213.pl_PL
dc.referencesT. Rodak and S. Spodzieja, Equivalence of mappings at infinity. Bull. Sci. Math. 136 (2012), no. 6, 679–686.pl_PL
dc.referencesS. Spodzieja, O włóknach odwzorowań wielomianowych. Materials of the XIX Conference of Complex Analytic and Algebraic Geometry, Publisher University of Lodz, Lodz, (2001), 23–37 (in polish).pl_PL
dc.referencesS. Spodzieja, The Łojasiewicz exponent at infinity for overdetermined polynomial mappings. Ann. Polon. Math. 78 (2002), 1–10.pl_PL
dc.referencesS. Spodzieja, Multiplicity and the Łojasiewicz exponent. Ann. Polon. Math. 73 (2000), 257–267pl_PL
dc.referencesS. Spodzieja, The Łojasiewicz exponent of subanalytic sets. Ann. Polon. Math. 87 (2005), 247–263.pl_PL
dc.referencesS. Spodzieja and A. Szlachcińska, Łojasiewicz exponent of overdetermined mappings. Bull. Pol. Acad. Sci. Math. 61 (2013), no. 1, 27–34.pl_PL
dc.referencesB. Teissier, Variétés polaires. I. Invariants polaires des singularités d’hypersurfaces. Invent. Math. 40 (1977), no. 3, 267–292.pl_PL
dc.referencesH. Whitney, Tangents to an analytic variety. Ann. of Math. 81 (1965), 496–549.pl_PL
dc.contributor.authorEmailspodziej@math.uni.lodz.plpl_PL
dc.contributor.authorEmailanna_loch@wp.plpl_PL
dc.identifier.doi10.18778/8088-922-4.20


Pliki tej pozycji

Thumbnail
Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska