dc.contributor.author | Olejnik, Jakub | |
dc.contributor.author | Olejnik, Alicja | |
dc.date.accessioned | 2017-12-28T06:21:29Z | |
dc.date.available | 2017-12-28T06:21:29Z | |
dc.date.issued | 2017-12 | |
dc.identifier.uri | http://hdl.handle.net/11089/23762 | |
dc.description.abstract | This paper presents a fundamentally improved statement on asymptotic behaviour of the well-known Gaussian QML estimator of parameters in high-order mixed regressive/autoregressive spatial model. We generalize the approach previously known in the econometric literature by considerably weakening assumptions on the spatial weight matrix, distribution of the residuals and the parameter space for the spatial autoregressive parameter. As an example application of our new asymptotic analysis we also give a statement on the large sample behaviour of a general fi xed effects design. | pl_PL |
dc.language.iso | en_US | pl_PL |
dc.publisher | Faculty of Economics and Sociology | pl_PL |
dc.relation.ispartofseries | Lodz Economics Working Papers;9 | |
dc.rights | Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/pl/ | * |
dc.title | Improved asymptotic analysis of Gaussian QML estimators in spatial models | pl_PL |
dc.type | Working Paper | pl_PL |
dc.contributor.authorAffiliation | Department of Mathematics and Computer Science University of Lodz | pl_PL |
dc.contributor.authorAffiliation | Faculty of Economics and Sociology, University of Lodz | pl_PL |
dc.references | Anselin, L. (1988). Spatial Econometrics: Methods and Models, Kluwer Academic, Dordrecht, doi:10.1007/978-94-015-7799-1. | pl_PL |
dc.references | Anselin, L., Le Gallo, J. and Jayet, H. (2006). Spatial Panel Econometrics, in Matyas, L. and Sevestre, P. (eds.) The Econometrics of Panel Data, Fundamentals and Recent Developments in Theory and Practice, 3rd edition, Kluwer, Dodrecht, doi:10.1007/978-3- 540-75892-1. | pl_PL |
dc.references | Badinger, H. and Egger, P. (2013). Estimation and testing of higher-order spatial autoregressive panel data error component models. Journal of Geographical Systems 15 (4) 453{489, doi:10.1007/s10109-012-0174-z. | pl_PL |
dc.references | Baltagi, B. H. (2005). Econometric Analysis of Panel Data, Chichester West Sussex, England. | pl_PL |
dc.references | Bhansali, R. J., Giraitis, L. and Kokoszka, P. S. (2007). Convergence of quadratic forms with non-vanishing diagonal. Statistics and Probability Letters 77 726{734, doi:10.1016/j.spl.2006.11.007. | pl_PL |
dc.references | Billingsley, P. (1995). Probability and Measure, 3nd ed. John Wiley & Sons, New York. | pl_PL |
dc.references | Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed. John Wiley & Sons, New York, doi:10.1002/9780470316962. | pl_PL |
dc.references | Cliff, A. D. and Ord, J. K. (1973). Spatial Autocorrelation, Pion, London. | pl_PL |
dc.references | Cressie, N. (1993). Statistics for Spatial Data, Wiley, New York. | pl_PL |
dc.references | Elhorst, J. P. (2014). Spatial Econometrics: From Cross-Sectional Data to Spatial Panels, Springer, Heidelberg, doi:10.1007/978-3-642-40340-8. | pl_PL |
dc.references | Elhorst, J. P., Lacombe, D. J. and Piras, G. (2014). On model speci cation and parameter space de nitions in higher order spatial econometric models. Regional Science and Urban Economics 42 211{220, doi:10.1016/j.regsciurbeco.2011.09.003. | pl_PL |
dc.references | Feng, C., Wang, H., Han, Y., Xia, Y. and Tu, X. M. (2014). The Mean Value Theorem and Taylors Expansion in Statistics. The American Statistician 67 245{248, doi:10.1080/00031305.2013.844203. | pl_PL |
dc.references | Gupta, A. and Robinson, P. (2015). Inference on higher-order spatial autoregressive models with increasingly many parameters. Journal of Econometrics 186 19{31, doi:10.1016/j.jeconom.2014.12.008 | pl_PL |
dc.references | H ajek, P. and Johanis, M. (2014). Smooth Analysis in Banach Spaces, De Gruyter, Berlin. | pl_PL |
dc.references | Hall, P. and Hyde, C. C. (1980). Martingale Limit Theory and Its Application, Academic Press Inc., New York. | pl_PL |
dc.references | Han, X., Hsieh C. and Lee, L. F. (2017). Estimation and Model Selection of Higher-order Spatial Autoregressive Model: An E cient Bayesian Approach. Regional Science and Urban Economics 63 97{120, doi:10.1016/j.regsciurbeco.2016.12.003. | pl_PL |
dc.references | Kelejian, H. H. and Prucha, I. R. (2001). On the Asymptotic Distribution of the Moran I Test Statistic with Applications. Journal of Econometrics 104 219{257 doi:10.1016/S0304- 4076(01)00064-1. | pl_PL |
dc.references | Lee, L. F. (2004). Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models. Econometrica 72 (6) 1899{1925, doi: 10.1111/j.1468- 0262.2004.00558.x. | pl_PL |
dc.references | Lee, L. F. (2007). GMM and 2SLS estimation of mixed regressive, spatial autoregressive models. Journal of Econometrics 137 489{514, doi:10.1016/j.jeconom.2005.10.004. | pl_PL |
dc.references | Lee, L. F. and Liu, J. (2010). E cient GMM estimation of high order spatial autoregressive models with autoregressive disturbances. Econometric Theory 26 187{230, doi:10.1017/S0266466609090653. | pl_PL |
dc.references | Lee, L. F., Liu, J. and Lin, X. (2010). Speci cation and estimation of social interaction models with network structures. The Econometrics Journal 13 145{176, doi:10.1111/j.1368- 423X.2010.00310.x. | pl_PL |
dc.references | Lee, L. F. and Yu, J. (2010a). Estimation of spatial autoregressive panel data models with fi xed effects Journal of Econometrics 154 165-185, doi:10.1016/j.jeconom.2009.08.001. | pl_PL |
dc.references | Lee, L. F. and Yu, J. (2010b). A spatial dynamic panel data model with both time and individual fixed effects Econometric Theory 26 564-597, doi:10.1017/S0266466609100099. | pl_PL |
dc.references | Lee, L. F. and Yu, J. (2013). Near Unit Root in the Spatial Autoregressive Model. Spatial Economic Analysis 8 314-351, doi:10.1080/17421772.2012.760134 | pl_PL |
dc.references | Lee, L. F. and Yu, J. (2014). E cient GMM estimation of spatial dynamic panel data models with fi xed effects. Journal of Econometrics 180 174-197, doi:10.1016/j.jeconom.2014.03.003. | pl_PL |
dc.references | Le Sage, J. and Pace, R. K. (2009). Introduction to spatial econometrics, CRC Press, Taylor & Francis Group, Boca Raton. | pl_PL |
dc.references | Li, K. (2017). Fixed-effects dynamic spatial panel data models and impulse response analysis. Journal of Econometrics 198 102-121, doi:10.1016/j.jeconom.2017.02.001. | pl_PL |
dc.references | Liu S. F. and Yang Z. (2015). Modi ed QML estimation of spatial autoregressive models with unknown heteroskedasticity and nonnormality. Regional Science and Urban Economics, 52 50-70, doi:10.1016/j.regsciurbeco.2015.02.003. | pl_PL |
dc.references | Olejnik, A. and Olejnik, J. (2017). An alternative to Partial Regression in Maximum Likelihood Estimation of Spatial Autoregressive Panel Data Model. Statistical Review, in press. | pl_PL |
dc.references | Paelinck, J. and Klaassen, L. (1979). Spatial Econometrics, Saxon House, Farnborough. | pl_PL |
dc.references | Potscher, M. B. and Prucha, I. R. (1997). Dynamic Nonlinear Econometric Models: Asymptotic Theory, Springer-Verlag, Berlin Heidelberg. | pl_PL |
dc.references | Qu, X. and Lee, L. F. (2017). QML estimation of spatial dynamic panel data models with endogenous time varying spatial weights matrices. Journal of Econometrics, 197 173-201, doi:10.1016/j.jeconom.2016.11.004. | pl_PL |
dc.references | Shi, W. and Lee, L. F. (2017). Spatial dynamic panel data models with interactive fixed effects. Journal of Econometrics, 197 323-347, doi:10.1016/j.jeconom.2016.12.001. | pl_PL |
dc.references | Takesaki, M. (1979). Theory of operator algebras I, Springer-Verlag, New York. | pl_PL |
dc.references | Yu, J., de Jong, R. and Lee, L. F. (2008). Quasi-Maximum Likelihood Estimators For Spatial Dynamic Panel Data With Fixed E ects When Both n and T Are Large. Journal of Econometrics 146 118-134, doi:10.1016/j.jeconom.2008.08.002. | pl_PL |
dc.references | Pruss, A. R. (1998). A bounded N-tuplewise independent and identically distributed counterexample to the CLT. Probability Theory and Related Fields 111 323-332, doi:10.1007/s004400050170. | pl_PL |