Show simple item record

dc.contributor.authorZawidzki, Michal
dc.date.accessioned2017-12-08T15:50:18Z
dc.date.available2017-12-08T15:50:18Z
dc.date.issued2014
dc.identifier.citationZawidzki M., Deductive Systems and the Decidability Problem for Hybrid Logics, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2014, doi: 10.18778/7969-042-8pl_PL
dc.identifier.isbn978-83-7969-042-8
dc.identifier.isbn978-83-233-3695-2
dc.identifier.isbn978-83-7969-043-5
dc.identifier.urihttp://hdl.handle.net/11089/23511
dc.descriptionThe book stands at the intersection of two topics: the decidability and computational complexity of hybrid logics, and the deductive systems designed for them. Hybrid logics are divided into two groups: standard hybrid logics involving nominals as expressions of a separate sort, and non-standard hybrid logics, which do not involve nominals but whose expressive power matches the expressive power of binder-free standard hybrid logics. The original results of the book are split into two parts. This division reflects the division of the book itself. We can say that the first type of results concern model-theoretic and complexity properties of hybrid logics. Since hybrid logics which we call standard are quite well investigated, our efforts focused on hybrid logics referred to as non­standard in the book. By non­standard hybrid logics we mean modal logics with global counting operators whose expressive power matches the expressive power of binder-free standard hybrid logics.pl_PL
dc.description.sponsorshipThe book ”Deductive systems and the decidability problem for hybrid logics” is a part of the project financed from the funds of the National Science Centre of Poland awarded by the decision number DEC-2011/01/N/HS1/01979pl_PL
dc.language.isoenpl_PL
dc.publisherŁódź University Presspl_PL
dc.publisherJagiellonian University Press
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.subjectDeductive systemspl_PL
dc.subjectLogicpl_PL
dc.subjectHybrid Logicpl_PL
dc.subjectModal logicpl_PL
dc.titleDeductive Systems and the Decidability Problem for Hybrid Logicspl_PL
dc.typeBookpl_PL
dc.rights.holder© Copyright by University of Łódz, Łódz 2014; © Copyright for this edition by Jagiellonian University Presspl_PL
dc.contributor.authorAffiliationUniversity of Łódź, Faculty of Philosophy and History Department of Logic and Methodology of Sciences, 16/18 Kopcińskiego St., 90-232 Łódźpl_PL
dc.identifier.eisbn978-83-7969-054-1
dc.identifier.eisbn978-83-233-9018-3
dc.referencesMetTeL website. http://mettel-prover.org.pl_PL
dc.referencesJames Allen. Towards a general theory of action and time. Artificial Intelligence, 23(2):123–154, 1984.pl_PL
dc.referencesCarlos Areces, Patrick Blackburn, and Maarten Marx. A roadmap on complexity for hybrid logics. In J. Flum and M. Rodríguez- Artalejo, editors, CSL, volume 1683 of Lecture Notes in Computer Science, pages 307–321. Springer, 1999.pl_PL
dc.referencesCarlos Areces, Patrick Blackburn, and Maarten Marx. The computational complexity of hybrid temporal logics. Logic Journal of the IGPL, 8(5):653–679, 2000.pl_PL
dc.referencesCarlos Areces, Patrick Blackburn, and Maarten Marx. Hybrid logics: Characterization, interpolation and complexity. Journal of Symbolic Logic, 66(3):977–1010, 2001.pl_PL
dc.referencesCarlos Areces, Guillaume Hoffmann, and Alexandre Denis. Modal logics with counting. In Dawar and de Queiroz [27], pages 98–109.pl_PL
dc.referencesGuillaume Aucher, Bastien Maubert, and François Schwarzentruber. Tableau method and NExpTime-completeness of DELsequents. Electronic Notes in Theoretical Computer Science, 278:17–30, 2011.pl_PL
dc.referencesFranz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors. The description logic handbook: theory, implementation, and applications. Cambridge University Press, New York, NY, USA, 2003.pl_PL
dc.referencesPatrick Blackburn. Representation, reasoning, and relational structures: a hybrid logic manifesto. Logi Journal of the IGPL, 8 (3):339–365, 2000. 199pl_PL
dc.referencesPatrick Blackburn. Internalizing labelled deduction. Journal of Logic and Computation, 10(1):137–168, 2000.pl_PL
dc.referencesPatrick Blackburn. Arthur prior and hybrid logic. Synthese, 150 (3):329–372, 2006.pl_PL
dc.referencesPatrick Blackburn. Arthur prior and hybrid logic. Synthese, 150 (3):329–372, 2006.pl_PL
dc.referencesPatrick Blackburn and Jerry Seligman. Hybrid languages. Journal of Logic Languaga and Information, 4(3):251–272, 1995.pl_PL
dc.referencesPatrick Blackburn and Jerry Seligman. What are hybrid languages? In M. Kracht, M. de Rijke, H. Wansing, and M. Zakharyaschev, editors, Advances in Modal Logic, volume 1, pages 41–62. CSLI Publications, 1998.pl_PL
dc.referencesPatrick Blackburn and Balder ten Cate. Pure extensions, proof rules, and hybrid axiomatics. Studia Logica, 84(2):277–322, 2006.pl_PL
dc.referencesPatrick Blackburn, Maarten de Rijke, and Yde Venema. Modal logic. Cambridge University Press, New York, NY, USA, 2001.pl_PL
dc.referencesThomas Bolander and Patrick Blackburn. Termination for hybrid tableaus. Journal of Logic and Computation, 17(3):517–554, 2007.pl_PL
dc.referencesThomas Bolander and Patrick Blackburn. Terminating tableau calculi for hybrid logics extending k. Electronic Notes in Theoretical Computer Science, 231:21–39, 2009.pl_PL
dc.referencesThomas Bolander and Torben Braüner. Two tableau-based decision procedures for hybrid logic. In H. Schlingloff, editor, 4th Methods for Modalities Workshop (M4M), Informatik-Bericht Nr. 194, pages 79–96. Humboldt-Universität zu Berlin, 2005.pl_PL
dc.referencesThomas Bolander and Torben Braüner. Tableau-based decision procedures for hybrid logic. Journal of Logic and Computation, 16(6):737–763, 2006.pl_PL
dc.referencesTorben Braüner. Two natural deduction systems for hybrid logic: A comparison. Journal of Logic, Language and Information, 13 (1):1–23, 2004.pl_PL
dc.referencesTorben Braüner. Hybrid logic and its proof-theory. Springer, Dordrecht, Netherlands, 2011.pl_PL
dc.referencesRobert Bull. An approach to tense logic. Theoria, 36(3):282–300, 1970.pl_PL
dc.referencesFrancesco Caro. Graded modalities II (canonical models). Studia Logica, 47(1):1–10, 1988.pl_PL
dc.referencesBalder ten Cate. Model theory for extended modal languages. PhD thesis, University of Amsterdam, 2005.pl_PL
dc.referencesClaudio Cerrato. Decidability by filtrations for graded normal logics (graded modalities V). Studia Logica, 53(1):61–73, 1994.pl_PL
dc.referencesMarcello D’Agostino. Tableau methods for classical propositional logic. In M. D’Agostino, D. Gabbay, R. Hahnle, and J. Posegga, editors, Handbook of Tableau Methods, pages 45–123. Kluwer Academic Publishers, Dordrecht, Netherlands, 1999.pl_PL
dc.referencesA. Dawar and R. de Queiroz, editors. Logic, Language, Information and Computation, 17th International Workshop, WoLLIC 2010, Brasilia, Brazil, July 6-9, 2010. Proceedings, volume 6188 of Lecture Notes in Computer Science, 2010. Springer.pl_PL
dc.referencesMaarten de Rijke. The modal logic of inequality. Journal of Symbolic Logic, 57(2):566–584, 1992.pl_PL
dc.referencesStéphane Demri. A simple tableau system for the logic of elsewhere. In P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors, TABLEAUX, volume 1071 of Lecture Notes in Computer Science, pages 177–192. Springer, 1996. ISBN 3-540-61208-4.pl_PL
dc.referencesJocelyne Faddoul and Volker Haarslev. Algebraic tableau reasoning for the description logic SHOQ. Journal of Applied Logic, 8 (4):334–355, 2010.pl_PL
dc.referencesJocelyne Faddoul, Nasim Farsinia, Volker Haarslev, and Ralf Möller. A hybrid tableau algorithm for ALCQ. In F. Baader, C. Lutz, and B. Motik, editors, Description Logics, volume 353 of CEUR Workshop Proceedings, pages 725–726. CEUR-WS.org, 2008.pl_PL
dc.referencesMaurizio Fattorosi-Barnaba and Francesco Caro. Graded modalities I. Studia Logica, 44(2):197–221, 1985.pl_PL
dc.referencesKit Fine. In so many possible worlds. Notre Dame Journal of Formal Logic, 13(4):516–520, 1972.pl_PL
dc.referencesMelvin Fitting. Modal proof theory. In P. Blackburn, F. Wolter, and J. van Benthem, editors, Handbook of Modal Logic, pages 85–138. Elsevier, Amsterdam, 2006.pl_PL
dc.referencesDov Gabbay. Labelled Deductive Systems. Oxford University Press, New York, NY, USA, 1996. [36] Jean Gallier. Logic for computer science: foundations of automatic theorem proving. Harper & Row Publishers, Inc., New York, NY, USA, 1985.pl_PL
dc.referencesGeorge Gargov and Valentin Goranko. Modal logic with names. Journal of Philosophical Logic, 22:607–636, 1993.pl_PL
dc.referencesStefan Göller, Arne Meier, Martin Mundhenk, Thomas Schneider, Michael Thomas, and Felix Weiß. The complexity of monotone hybrid logics over linear frames and the natural numbers. In T. Bolander, T. Braüner, S. Ghilardi, and L. Moss, editors, Advances in Modal Logic, pages 261–278. College Publications, 2012.pl_PL
dc.referencesValentin Goranko. Hierarchies of modal and temporal logics with reference pointers. Journal of Logic, Language and Information, 5(1):1–24, 1996.pl_PL
dc.referencesDaniel Götzmann, Mark Kaminski, and Gert Smolka. Spartacus: A tableau prover for hybrid logic. Electronic Notes in Theoretical Computer Science, 262:127–139, 2010.pl_PL
dc.referencesErich Grädel, Phokion Kolaitis, and Moshe Vardi. On the decision problem for two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.pl_PL
dc.referencesGuillaume Hoffmann. Lightweight hybrid tableaux. Journal of Applied Logic, 8(4):397–408, 2010.pl_PL
dc.referencesIan Horrocks and Ulrike Sattler. A description logic with transitive and inverse roles and role hierarchies. Journal of Logic and Computation, 9(3):385–410, 1999.pl_PL
dc.referencesIan Horrocks and Ulrike Sattler. Decidability of SHIQ with complex role inclusion axioms. In G. Gottlob and T. Walsh, editors, IJCAI, pages 343–348. Morgan Kaufmann, 2003.pl_PL
dc.referencesIan Horrocks and Ulrike Sattler. Decidability of SHIQ with complex role inclusion axioms. Artificial Intelligence, 160(1-2): 79–104, 2004.pl_PL
dc.referencesIan Horrocks and Ulrike Sattler. A tableaux decision procedure for SHOIQ. In L. Pack Kaelbling and A. Saffiotti, editors, IJCAI, pages 448–453. Professional Book Center, 2005.pl_PL
dc.referencesIan Horrocks and Ulrike Sattler. A tableau decision procedure for SHOIQ. Journal of Automated Reasoning, 39(3):249–276, 2007.pl_PL
dc.referencesIan Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for expressive description logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors, LPAR, volume 1705 of Lecture Notes in Computer Science, pages 161–180. Springer, 1999.pl_PL
dc.referencesIan Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with individuals for the description logic SHIQ. In McAllester [65], pages 482–496.pl_PL
dc.referencesIan Horrocks, Oliver Kutz, and Ulrike Sattler. The irresistible SRIQ. In B. Cuenca Grau, I. Horrocks, B. Parsia, and P. Patel- Schneider, editors, OWLED, volume 188 of CEURWorkshop Proceedings, pages 1–11. CEUR-WS.org, 2005.pl_PL
dc.referencesIan Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROIQ. In P. Doherty, J. Mylopoulos, and Ch. Welty, editors, KR, pages 57–67. AAAI Press, 2006.pl_PL
dc.referencesAndrzej Indrzejczak. Modal hybrid logic. Logic and Logical Philosophy, 16(2-3):147–257, 2007.pl_PL
dc.referencesAndrzej Indrzejczak. Natural Deduction, Hybrid Systems and Modal Logics. Springer, Dordrecht, Netherlands, 2010.pl_PL
dc.referencesAndrzej Indrzejczak and Michał Zawidzki. Decision procedures for some strong hybrid logics. Logic and Logical Philosophy, 22 (4), 2013. ISSN 2300-9802. URL http://wydawnictwoumk.pl/ czasopisma/index.php/LLP/article/view/LLP.2013.022.pl_PL
dc.referencesMark Kaminski. Incremental Decision Procedures for Modal Logics with Nominals and Eventualities. PhD thesis, Saarland University, 2012.pl_PL
dc.referencesMark Kaminski and Gert Smolka. Terminating tableau systems for hybrid logic with difference and converse. Journal of Logic, Language and Information, 18(4):437–464, 2009.pl_PL
dc.referencesMark Kaminski and Gert Smolka. Terminating tableau systems for hybrid logic with difference and converse. Journal of Logic, Language and Information, 18(4):437–464, 2009.pl_PL
dc.referencesMark Kaminski and Gert Smolka. Terminating tableaux for hybrid logic with eventualities. In J. Giesl and R. Hähnle, editors, IJCAR, volume 6173 of Lecture Notes in Computer Science, pages 240– 254. Springer, 2010.pl_PL
dc.referencesMark Kaminski, Sigurd Schneider, and Gert Smolka. Terminating tableaux for graded hybrid logic with global modalities and role hierarchies. In M. Giese and A. Waaler, editors, TABLEAUX, volume 5607 of Lecture Notes in Computer Science, pages 235– 249. Springer, 2009.pl_PL
dc.referencesMark Kaminski, Sigurd Schneider, and Gert Smolka. Terminating tableaux for graded hybrid logic with global modalities and role hierarchies. Logical Methods in Computer Science, 7(1):1–21, 2011.pl_PL
dc.referencesYevgeny Kazakov and Ian Pratt-Hartmann. A note on the complexity of the satisfiability problem for graded modal logics. In LICS, pages 407–416. IEEE Computer Society, 2009. ISBN 978- 0-7695-3746-7.pl_PL
dc.referencesMohammad Khodadadi, Renate Schmidt, Dmitry Tishkovsky, and Michał Zawidzki. Terminating tableau calculi for modal logic k with global counting operators. 2012. URL http://www. mettel-prover.org/papers/KEn12.pdf.pl_PL
dc.referencesSaul Kripke. A completeness theorem in modal logic. Journal of Symbolic Logic, 24(1):1–14, 1959.pl_PL
dc.referencesCarsten Lutz, Holger Sturm, Frank Wolter, and Michael Zakharyaschev. A tableau decision algorithm for modalized ALC with constant domains. Studia Logica, 72(2):199–232, 2002.pl_PL
dc.referencesD. McAllester, editor. Automated Deduction - CADE-17, 17th International Conference on Automated Deduction, Pittsburgh, PA, USA, June 17-20, 2000, Proceedings, volume 1831 of Lecture Notes in Computer Science, 2000. Springer.pl_PL
dc.referencesArne Meier, Martin Mundhenk, Thomas Schneider, Michael Thomas, Volker Weber, and Felix Weiss. The complexity of satisfiability for fragments of hybrid logic - part I. Journal of Applied Logic, 8(4):409–421, 2010.pl_PL
dc.referencesMartin Mundhenk and Thomas Schneider. Undecidability of multi-modal hybrid logics. Electronic Notes in Theoretical Computer Science, 174(6):29–43, 2007.pl_PL
dc.referencesMartin Mundhenk and Thomas Schneider. The complexity of hybrid logics over equivalence relations. Journal of Logic, Language and Information, 18(4):493–514, 2009.pl_PL
dc.referencesMartin Mundhenk, Thomas Schneider, Thomas Schwentick, and Volker Weber. Complexity of hybrid logics over transitive frames. Journal of Applied Logic, 8(4):422–440, 2010.pl_PL
dc.referencesRobert Myers and Dirk Pattinson. Hybrid logic with the difference modality for generalisations of graphs. Journal of Applied Logic, 8(4):441–458, 2010.pl_PL
dc.referencesSara Negri and Jan von Plato. Structural proof theory. Cambridge University Press, Cambridge, UK, 2001pl_PL
dc.referencesHans Jürgen Ohlbach and Jana Koehler. Role hierarchies and number restrictions. In R. Brachman et. al., editor, Description Logics, volume 410 of URA-CNRS, pages 1–5, 1997.pl_PL
dc.referencesChristos Papadimitriou. On the complexity of integer programming. Journal of ACM, 28(4):765–768, 1981.pl_PL
dc.referencesChristos Papadimitriou. Computational complexity. Academic Internet Publ., 2007.pl_PL
dc.referencesChristos Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1982.pl_PL
dc.referencesRohit Parikh. The completeness of propositional dynamic logic. In J. Winkowski, editor, Mathematical Foundations of Computer Science 1978, volume 64 of Lecture Notes in Computer Science, pages 403–415. Springer Berlin Heidelberg, 1978.pl_PL
dc.referencesSolomon Passy and Tinko Tinchev. Quantifiers in combinatory pdl: completeness, definability, incompleteness. In L. Budach, editor, FCT, volume 199 of Lecture Notes in Computer Science, pages 512–519. Springer, 1985.pl_PL
dc.referencesSolomon Passy and Tinko Tinchev. An essay in combinatory dynamic logic. Information and Computation, 93(2):263–332, 1991.pl_PL
dc.referencesIan Pratt-Hartmann. The two-variable fragment with counting revisited. In Dawar and de Queiroz [27], pages 42–54.pl_PL
dc.referencesArthur Prior. Past, Present and Future. Oxford University Press, New York, NY, USA, 1967.pl_PL
dc.referencesArthur Prior. Papers on Time and Tense. Oxford University Press, New York, NY, USA, 2003.pl_PL
dc.referencesRenate Schmidt. Synthesising terminating tableau calculi for relational logics (invited paper). In H. de Swart, editor, RAMICS, volume 6663 of Lecture Notes in Computer Science, pages 40– 49. Springer, 2011.pl_PL
dc.referencesRenate Schmidt and Dmitry Tishkovsky. Using tableau to decide description logics with full role negation and identity. Manuscript, available at http://www.mettel-prover. org/papers/ALBOid.pdf, 2011.pl_PL
dc.referencesRenate Schmidt and Dmitry Tishkovsky. Automated synthesis of tableau calculi. Logical Methods in Computer Science, 7(2): 1–32, 2011.pl_PL
dc.referencesThomas Schneider. The Complexity of Hybrid Logics over Restricted Classes of Frames. PhD thesis, University of Jena, 2007.pl_PL
dc.referencesJerry Seligman. A cut-free sequent calculus for elementary situated reasoning. Technical Report HCRC-RP 22, HCRC, Edinburgh, 1991.pl_PL
dc.referencesJerry Seligman. Situated consequence in elementary situation theory. Technical Report IULG-92-16, Indiana University, 1992.pl_PL
dc.referencesJerry Seligman. Internalization: The case of hybrid logics. Journal of Logic and Computation, 11(5):671–689, 2001.pl_PL
dc.referencesRaymond Smullyan. First-order logic. Dover Publications, Toronto, ON, Canada, 1995.pl_PL
dc.referencesDmitry Tishkovsky, Renate Schmidt, and Mohammad Khodadadi. MetTeL2: Towards a prover generation platform (system description). Manuscript, available at http://www.mettel-prover. org/papers/MetTeL2SysDesc.pdf, 2012.pl_PL
dc.referencesStephan Tobies. The complexity of reasoning with cardinality restrictions and nominals in expressive description logics. Journal of Artificial Intelligence Research, 12:199–217, 2000.pl_PL
dc.referencesStephan Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge Representation. PhD thesis, RWTH Aachen, 2001.pl_PL
dc.referencesMiroslava Tzakova. Tableau calculi for hybrid logics. In N. Murray, editor, TABLEAUX, volume 1617 of Lecture Notes in Computer Science, pages 278–292. Springer, 1999.pl_PL
dc.referencesJohan van Benthem. Modal Correspondence Theory. PhD thesis, Universiteit van Amsterdam, 1977.pl_PL
dc.referencesJohan van Benthem. Modal frame classes revisited. Fundamenta Informaticae, 18:307–317, 1993.pl_PL
dc.referencesJohan Van Benthem. Modal Logic for Open Minds. University of Chicago Press, Chicago, IL, USA, 2010.pl_PL
dc.referencesWiebe van der Hoek and Maarten de Rijke. Generalized quantifiers and modal logic. Journal of Logic, Language and Information, 2:19–58, 1993.pl_PL
dc.referencesWiebe van der Hoek and Maarten de Rijke. Counting objects. Journal of Logic and Computation, 5(3):325–345, 1995.pl_PL
dc.referencesPeter van Emde Boas. The convenience of tiling. In Andrea Sorbi, editor, Complexity, Logic and Recursion Theory, volume 187 of Lecture Notes in Pure and Applied Mathematics, pages 331–363. Marcel Dekker Inc., 1997.pl_PL
dc.referencesFrank Wolter and Michael Zakharyaschev. On the decidability of description logics with modal operators. In A. Cohn, L. Schubert, and S. Shapiro, editors, KR, pages 512–523. Morgan Kaufmann, 1998.pl_PL
dc.referencesFrank Wolter and Michael Zakharyaschev. Modal description logics: Modalizing roles. Fundamenta Informaticae, 39(4):411– 438, 1999.pl_PL
dc.referencesMichał Zawidzki. Adequacy of the logic K(En). Bulletin of the Section of Logic, 43(3-4):155–172, 2012.pl_PL
dc.referencesMichał Zawidzki. Tableau-based decision procedure for hybrid logic with satisfaction operators, universal modality and difference modality. In R. Rendsvig and S. Katrenko, editors, ESSLLI, volume 954 of Workshop Proceedings, pages 191–201. CEUR, 2012.pl_PL
dc.referencesMichał Zawidzki, Renate Schmidt, and Dmitry Tishkovsky. Satisfiability problem for modal logic with global counting operators coded in binary is NExpTime-complete. Information Processing Letters, 113(1-2):34–38, 2013.pl_PL
dc.contributor.authorEmailmichal.zawidzki@gmail.compl_PL
dc.identifier.doi10.18778/7969-042-8


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska