Show simple item record

dc.contributor.authorStaruch, Bogdan
dc.date.accessioned2017-07-10T12:08:39Z
dc.date.available2017-07-10T12:08:39Z
dc.date.issued2016
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/22187
dc.description.abstractWe introduce a notion of dimension of an algebraic lattice and, treating such a lattice as the congruence lattice of an algebra, we introduce the dimension of an algebra, too. We define a star-product as a special kind of subdirect product. We obtain the star-decomposition of algebras into one-dimensional factors, which generalizes the known decomposition theorems e.g. for Abelian groups, linear spaces, Boolean algebras.en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic;3/4
dc.subjectuniversal algebraen_GB
dc.subjectalgebraic latticeen_GB
dc.subjectcongruence latticeen_GB
dc.subjectuniform latticeen_GB
dc.subjectdimension of algebraen_GB
dc.subjectone-dimensional algebraen_GB
dc.subjectsubdirect producten_GB
dc.subjectstar-producten_GB
dc.subjectdecomposition of algebraen_GB
dc.titleIrredundant Decomposition of Algebras into One-Dimensional Factorsen_GB
dc.typeArticleen_GB
dc.rights.holder© Copyright by Authors, Łódź 2016; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2016en_GB
dc.page.number[213]-238
dc.contributor.authorAffiliationUniversity of Warmia and Mazury, Olsztyn, Department of Mathematics and Computer Science
dc.identifier.eissn2449-836X
dc.referencesG. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Philos. Soc. 31 (1935), pp. 433–454.en_GB
dc.referencesG. Birkhoff, Lattice Theory. American Mathematical Society Colloquium Publications, vol. 25, American Mathematical Society, New York, (1948).en_GB
dc.referencesS. Burris, H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, 1981.en_GB
dc.referencesA.W. Goldie, The structure of prime rings under ascending chain conditions, Proc. London Math. Soc. (3) 8(1958), pp. 589-608.en_GB
dc.referencesG. Grätzer, General Lattice Theory. Second edition. Birkhauser Verlag, Basel (1998).en_GB
dc.referencesG. Grätzer, E. T. Schmidt, Characterizations of congruence lattices of abstract algebras, Acta Sci. Math. (Szeged) 24(1963), pp. 34-59.en_GB
dc.referencesP. Grzeszczuk, J. Okniński, E. R. Puczyłowski, Relations between some dimensions of modular lattices, Comm. Algebra 17(1989), pp. 1723–1737.en_GB
dc.referencesP. Grzeszczuk, E. R. Puczyłowski, On Goldie and dual Goldie dimensions, J. Pure Appl. Algebra 31(1984), pp. 47–54.en_GB
dc.referencesP. Grzeszczuk, E. R. Puczyłowski, On infnite Goldie dimension of modular lattices and modules, J. Pure Appl. Algebra 35(1985), pp. 151–155.en_GB
dc.referencesT. Katrinák, S. El-Assar, Algebras with Boolean and Stonean congruence lattices, Acta Math. Hungar. 48 (1986), pp. 301–31.en_GB
dc.referencesJ. Krempa, On lattices, modules and groups with many uniform elements, Algebra Discrete Math. 1 (2004), pp. 75–86.en_GB
dc.referencesJ. Krempa, B. Terlikowska-Osłowska, On uniform dimension of lattices, Contributions to General Algebra 9, Holder-Pichler-Tempsky, Wien, 1995, pp. 219–230.en_GB
dc.referencesR. N. McKenzie, G. F. McNulty, W. F. Taylor, Algebras, Lattices, Varieties, Vol. 1, The Wadsworth Brooks/Cole Mathematics Series. Wadsworth Brooks/Cole Advanced Books Software, Monterey, California, (1987).en_GB
dc.referencesE. R. Puczyłowski, A linear property of Goldie dimension of modules and modular lattices, J. Pure Appl. Algebra 215 (2011), pp. 1596-1605.en_GB
dc.referencesS. Roman, Lattices and Ordered Sets, Springer-Verlag, New York, 2008.en_GB
dc.referencesA. Walendziak, On direct decompositions of lattices, bf Algebra Universalis, 37 (1997), pp. 185–190.en_GB
dc.referencesA. Walendziak, Decompositions in lattices and some representations of algebras, Dissertationes Mathematicae 392, (2001).en_GB
dc.referencesA. P. Zolotarev, On balanced lattices and Goldie dimension of balanced lattices, Siberian Math. J. 35:3 (1994), pp. 539-546.en_GB
dc.referencesA. P. Zolotarev, Direct decompositions of elements, and Goldie numbers in balanced lattices, Russian Math. (Iz. VUZ), 36:10 (1992), pp. 19-27.en_GB
dc.contributor.authorEmailbstar@uwm.edu.pl
dc.identifier.doi10.18778/0138-0680.45.3.4.06
dc.relation.volume45en_GB


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record