Show simple item record

dc.contributor.authorIlić, Mirjana
dc.date.accessioned2017-05-16T09:59:09Z
dc.date.available2017-05-16T09:59:09Z
dc.date.issued2016
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/21622
dc.description.abstractA natural deduction system NI, for the full propositional intuitionistic logic, is proposed. The operational rules of NI are obtained by the translation from Gentzen’s calculus LJ and the normalization is proved, via translations from sequent calculus derivations to natural deduction derivations and back.en_GB
dc.description.sponsorshipThis work is supported by the Ministary of Science and Technology of Serbia, grant number ON174026.en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic;1
dc.subjectnatural deductionen_GB
dc.subjectintuitionistic logicen_GB
dc.titleAn Alternative Natural Deduction for the Intuitionistic Propositional Logicen_GB
dc.typeArticleen_GB
dc.rights.holder© Copyright by Authors, Łódź 2016; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2016en_GB
dc.page.number[33]-51
dc.contributor.authorAffiliationUniversity of Belgrade, Faculty of Economics
dc.identifier.eissn2449-836X
dc.referencesK. Došen, A Historical Introduction to Substructural Logics, Substructural Logics, (eds. P. Schroeder-Heister and K. Došen), pp. 1–30, Oxford Science Publication, (1993).en_GB
dc.referencesN. Francez, Relevant harmony, Journal of Logic and Computation, Volume 26, Number 1 (2016), pp. 235–245.en_GB
dc.referencesG. Gentzen, Investigations into logical deduction, The Collected Papers of Gerhard Gentzen, Szabo, M. E. (ed.) North–Holland, pp. 68–131, (1969).en_GB
dc.referencesS. Negri, A normalizing system of natural deduction for intuitionistic linear logic, Archive for Mathematical Logic 41 (2002), pp. 789–810.en_GB
dc.referencesS. Negri, J. von Plato, Sequent calculus in natural deduction style, The Journal of Symbolic Logic, Volume 66, Number 4 (20011), pp. 1803–1816.en_GB
dc.referencesJ. von Plato, Natural deduction with general elimination rules, Archive for Mathematical Logic 40 (2001), pp. 541–567.en_GB
dc.referencesG. Restall, Proof theory philosophy, manuscript, available at http://consequently.org/writing/ptpen_GB
dc.referencesM. H. Sørensen, P. Urzyczyn, Lectures on the Curry–Howard Isomorphism, Studies in Logic and the Foundations of Mathematics, Volume 149 (2006), Elsevier.en_GB
dc.referencesA. S. Troelstra, H. Schwichtenberg, Basic Proof Theory, Cambridge University Press, (1996).en_GB
dc.contributor.authorEmailmirjanailic@ekof.bg.ac.rs
dc.identifier.doi10.18778/0138-0680.45.1.03
dc.relation.volume45en_GB


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record