Pokaż uproszczony rekord

dc.contributor.authorSkubis, Aleksandraen
dc.contributor.authorSikora, Bartoszen
dc.contributor.authorZmarzły, Nikolaen
dc.contributor.authorWojdas, Emiliaen
dc.contributor.authorMazurek, Urszulaen
dc.date.accessioned2017-03-07T07:40:19Z
dc.date.available2017-03-07T07:40:19Z
dc.date.issued2017-02-07en
dc.identifier.issn1730-2366en
dc.identifier.urihttp://hdl.handle.net/11089/20774
dc.description.abstractSecond part of manuscript based on osteogenesis differentiation of stem cells. Bones are highly regenerative organs but there are still many problems with therapy of large bone defects. Sometimes there is necessary to make a replacement or expansion new bone tissue. Stem cells might be a good solution for this especially ADSCs which manage differentiate into osteoblast in in vitro and in vivo conditions.en
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen
dc.relation.ispartofseriesFolia Biologica et Oecologica;12en
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0en
dc.subjectmesenchymal stem cellsen
dc.subjectregenerative medicineen
dc.subjectadipose tissueen
dc.titleAdipose-derived stem cells: a review of osteogenesis differentiationen
dc.page.number38-47en
dc.contributor.authorAffiliationSkubis, Aleksandra - Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, ul. Jedności 8, 41-200 Sosnowiec, Polanden
dc.contributor.authorAffiliationSikora, Bartosz - Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, ul. Jedności 8, 41-200 Sosnowiec, Polanden
dc.contributor.authorAffiliationZmarzły, Nikola - Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, ul. Jedności 8, 41-200 Sosnowiec, Polanden
dc.contributor.authorAffiliationWojdas, Emilia - Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, ul. Jedności 8, 41-200 Sosnowiec, Polanden
dc.contributor.authorAffiliationMazurek, Urszula - Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, ul. Jedności 8, 41-200 Sosnowiec, Polanden
dc.referencesAbudusaimi, A., Aihemaitijiang, Y., Wang, Y.H., Cui, L., Maimaitiming, S. & Abulikemu, M. 2011. Adipose-derived stem cells enhance bone regeneration in vascular necrosis of the femoral head in the rabbit. Journal of International Medical Research, 39(5): 1852–1860. doi: 10.1177/147323001103900528 ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000297532400028&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesBajek, A., Gurtowska, N., Olkowska, J., Kazmierski, L., Maj, M. & Drewa, T. 2016. Adipose-Derived Stem Cells as a Tool in Cell-Based Therapies. Archivum Immunologiae et Therapiae Experimentalis, 64(6): 443–454. doi: 10.1007/s00005-016-0394-x ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000387266900002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesBehr, B., Tang, C., Germann, G., Longaker, M.T. & Quarto, N. 2011. Locally applied vascular endothelial growth factor A increases the osteogenic healing capacity of human adipose-derived stem cells by promoting osteogenic and endothelial differentiation. Stem Cells, 29(2): 286–296. doi: 10.1002/stem.581 ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000287698600012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesBionaz, M., Monaco, E. & Wheeler, M.B. 2015. Transcription Adaptation during In Vitro Adipogenesis and Osteogenesis of Porcine Mesenchymal Stem Cells: Dynamics of Pathways, Biological Processes, Up-Stream Regulators, and Gene Networks. PLoS One, 10(9): e0137644.en
dc.referencesBirmingham, E., Niebur, G.L., McHugh, P.E., Shaw, G., Barry, F.P. & McNamara, L.M. 2012. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. European cells & materials, 23: 13–27.en
dc.referencesBourin, P., Bunnell, B.A., Casteilla, L., Dominici, M., Katz, A.J., March, K.L., Redl, H., Rubin, J.P., Yoshimura, K. & Gimble, J.M. 2013. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy, 15(6): 641–648.en
dc.referencesBunnell, B.A., Flaat, M., Gagliardi, C., Patel, B. & Ripoll, C. 2008. Adipose-derived stem cells: isolation, expansion and differentiation. Methods, 45(2): 115–120. doi: 10.1016/j.ymeth.2008.03.006 ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000258160200003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesBusilacchi, A., Gigante, A., Mattioli-Belmonte, M., Manzotti, S. & Muzzarelli, R.A. 2013. Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydrate Polymers, 98(1): 665–676. doi: 10.1016/j.carbpol.2013.06.044 ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000325835600088&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesChen, G., Shi, X., Sun, C., Li, M., Zhou, Q., Zhang, C., Huang, J., Qiu, Y., Wen, X., Zhang, Y., Zhang, Y., Yang, S., Lu, L., Zhang, J., Yuan, Q., Lu, J., Xu, G., Xue, Y., Jin, Z., Jiang, C., Ying, M. & Liu, X. 2013. VEGF-mediated proliferation of human adipose tissue-derived stem cells. PLoS One, 8(10): e73673. doi: 10.1371/journal.pone.0073673en
dc.referencesChen, L., Song, J., Cui, J., Hou, J., Zheng, X., Li, C. & Liu, L. 2013. microRNAs regulate adipocyte differentiation. Cell Biology International, 37(6): 533–546. doi: 10.1002/cbin.10063 ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000318623900002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesCheng, K.H., Kuo, T.L., Kuo, K.K. & Hsiao, C.C. 2011. Human adipose-derived stem cells: Isolation, characterization and current application in regeneration medicine. Genomic Medicine, Biomarkers, and Health Sciences, 3: 53–62. doi: 10.1016/j.gmbhs.2011.08.003en
dc.referencesClark, D., Wang, X., Chang, S., Czajka-Jakubowska, A., Clarkson, B.H. & Liu, J. 2015. VEGF promotes osteogenic differentiation of ASCs on ordered fluorapatite surfaces. Journal of Biomedical Materials Research Part A 2015: 103A: 639–645. ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000349101700022&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesDai, R., Wang, Z., Samanipour, R., Koo, K.I. & Kim, K. 2016. Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications. Stem Cells International: 6737345. ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000371515700001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesDash, M., Chiellini, F., Ottenbrite, R.M. & Chiellini, E. 2011. Chitosan - A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science, 36: 981–1014. doi: 10.1016/j.progpolymsci.2011.02.001 ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000292674700001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesDoi, K., Tanaka, S., Iida, H., Eto, H., Kato, H., Aoi, N., Kuno, S., Hirohi, T. & Yoshimura, K. 2013. Stromal vascular fraction isolated from lipo-aspirates using an automated processing system: bench and bed analysis. Journal of Tissue Engineering and Regenerative Medicine, 7(11): 864–870. doi: 10.1002/term.1478 ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000326418400003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesDominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, Dj. & Horwitz, E. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4): 315–317. doi: 10.1080/14653240600855905en
dc.referencesFernandez-Moure, J.S., Corradetti, B., Chan, P., Van Eps, J.L., Janecek, T., Rameshwar, P., Weiner, B.K. & Tasciotti, E. 2015. Enhanced osteogenic potential of mesenchymal stem cells from cortical bone: a comparative analysis. Stem Cell Research & Therapy, 6: 203. doi: 10.1186/s13287-015-0193-z ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000363509400001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesFathi, E. & Farahzadi, R. 2016. Isolation, Culturing, Characterization and Aging of Adipose Tissue-derived Mesenchymal Stem Cells: A Brief Overview. Brazilian Archives of Biology and Technology, Curitiba, 59: e16150383.en
dc.referencesGao, B., Huang, Q., Jie, Q., Wang, L., Zhang, H.Y., Liu, J., Yang, L. & Luo, Z.J. 2015. Dose-response estrogen promotes osteogenic differentiation via GPR40 (FFAR1) in murine BMMSCs. Biochimie, 110: 36–44. doi: 10.1016/j.biochi.2015.01.001en
dc.referencesGimble, J. & Guilak, F. 2003. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy, 5(5): 362–369. doi: 10.1080/14653240310003026en
dc.referencesGnanasegaran, N., Govindasamy, V., Musa, S. & Kasim, N.H.A. 2014. Different Isolation Methods Alter the Gene Expression Profiling of Adipose Derived Stem Cells. International Journal of Medical Sciences, 11(4): 391–403. doi: 10.7150/ijms.7697 ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000334609100012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesKato, H., Ochiai-Shino, H., Onodera, S., Saito, A., Shibahara, T. & Azuma, T. 2015. Promoting effect of 1,25(OH)2 vitamin D3 in osteogenic differentiation from induced pluripotent stem cells to osteocyte-like cells. Open Biology, 5(2): 140201.en
dc.referencesKolaparthy, L.K., Sanivarapu, S., Moogla, S. & Kutcham, R.S. 2015. Adipose Tissue - Adequate, Accessible Regenerative Material. International Journal of Stem Cells, 8(2): 121–127. doi: 10.15283/ijsc.2015.8.2.121en
dc.referencesLangenbach, F. & Handschel, J. 2013. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Research & Therapy, 4(5): 117. doi: 10.1186/scrt328 ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000325246500001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesLee, H.M., Joo, B.S., Lee, C.H., Kim, H.Y., Ock, J.H. & Lee, Y.S. 2015. Effect of Glucagon-like Peptide-1 on the Differentiation of Adipose-derived Stem Cells into Osteoblasts and Adipocytes. Journal of Menopausal Medicine, 21(2): 93–103.en
dc.referencesLi, C.J., Madhu, V., Balian, G., Dighe, A.S. & Cui, Q. 2015. Cross-Talk Between VEGF and BMP-6 Pathways Accelerates Osteogenic Differentiation of Human Adipose-Derived Stem Cells. Journal of Cellular Physiology, 230(11): 2671–2682. ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000358692700012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesLi, X.L., Liu, Y.B., Ma, E.G., Shen, W.X., Li, H. & Zhang, Y.N. 2015. Synergistic effect of BMP9 and TGF-β in the proliferation and differentiation of osteoblasts. Genetics and molecular research, 14(3): 7605–7615.en
dc.referencesLu, W., Ji, K., Kirkham, J., Yan, Y., Boccaccini, A.R., Kellett, M., Jin, Y. & Yang, X.B. 2014. Bone tissue engineering by using a combination of polymer/Bioglass composites with human adipose-derived stem cells. Cell and Tissue Research, 356(1): 97–107. doi: 10.1007/s00441-013-1770-zen
dc.referencesMaleki, M., Ghanbarvand, F., Reza Behvarz, M., Ejtemaei, M. & Ghadirkhomi, E. 2014. Comparison of Mesenchymal Stem Cell Markers in Multiple Human Adult Stem Cells. International Journal of Stem Cells, 7(2): 118–126. doi: 10.15283/ijsc.2014.7.2.118en
dc.referencesMonaco, E., Bionaz, M., Rodriguez-Zas, S., Hurley, W.L. & Wheeler, M.B. 2012. Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation. PLoS One, 7(3): e32481. doi: 10.1371/journal.pone.0032481en
dc.referencesMusina, R.A., Bekchanova, E.S. & Sukhikh, G.T. 2005. Comparison of mesenchymal stem cells obtained from different human tissues. Bulletin of Experimental Biology and Medicine, 139(4): 504–509. doi: 10.1007/s10517-005-0331-1en
dc.referencesOlkowska-Truchanowicz, J. 2008. Izolacja i charakterystyka komórek progenitorowych tkanki tłuszczowej. Postępy Biologii Komórki, 35 (4): 517–526.en
dc.referencesOshita, K., Yamaoka, K., Udagawa, N., Fukuyo, S., Sonomoto, K., Maeshima, K., Kurihara, R., Nakano, K., Saito, K., Okada, Y., Chiba, K. & Tanaka, Y. 2011. Human mesenchymal stem cells inhibit osteoclastogenesis through osteoprotegerin production. Arthritis & Rheumatology, 63(6): 1658–1667.en
dc.referencesRanera, B., Remacha, A.R., Álvarez-Arguedas, S., Romero, A., Vázquez, F.J., Zaragoza, P., Martín-Burriel, I. & Rodellar, C. 2012. Effect of hypoxia on equine mesenchymal stem cells derived from bone marrow and adipose tissue. BMC Veterinary Research, 22 (8): 142. doi: 10.1186/1746-6148-8-142 ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000310445200001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesSaulnier, N., Piscaglia, A.C., Puglisi, M.A., Barba, M., Arena, V., Pani, G., Alfieri, S. & Gasbarrini, A. 2010. Molecular mechanisms underlying human adipose tissue-derived stromal cells differentiation into a hepatocyte-like phenotype. Digestive and Liver Disease, 42(12): 895–901. doi: 10.1016/j.dld.2010.04.013en
dc.referencesShah, A.R., Cornejo, A., Guda, T., Sahar, D.E., Stephenson, S.M., Chang, S., Krishnegowda, N.K., Sharma, R. & Wang, H.T. 2014. Differentiated adipose-derived stem cell cocultures for bone regeneration in polymer scaffolds in vivo. Journal of Craniofacial Surgery, 25(4): 1504–109. doi: 10.1097/SCS.0000000000000755 ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000340257800135&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesSonomoto, K., Yamaoka, K., Oshita, K., Fukuyo, S., Zhang, X., Nakano, K., Okada, Y. & Tanaka, Y. 2012. Interleukin-1β induces differentiation of human mesenchymal stem cells into osteoblasts via the Wnt-5a/receptor tyrosine kinase-like orphan receptor 2 pathway. Arthritis & Rheumatology, 64(10): 3355–3363.en
dc.referencesTakano, T., Li, Y.J., Kukita, A., Yamaza, T., Ayukawa, Y., Moriyama, K., Uehara, N., Nomiyama, H., Koyano, K. & Kukita, T. 2014. Mesenchymal stem cells markedly suppress inflammatory bone destruction in rats with adjuvant-induced arthritis. Laboratory Investigation, 94(3): 286–296. doi: 10.1038/labinvest.2013.152 ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000332091200004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesTanaka, Y. 2015. Human mesenchymal stem cells as a tool for joint repair in rheumatoid arthritis. Clinical and Experimental Rheumatology, 33(4 Suppl 92): S58–62.en
dc.referencesUndale, A.H., Westendorf, J.J., Yaszemski, M.J. & Khosla, S. 2009. Mesenchymal Stem Cells for Bone Repair and Metabolic Bone Diseases. Mayo Clinic Proceedings, 84(10): 893–902. doi: 10.4065/84.10.893 ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000270516900006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesValorani, M.G., Montelatici, E., Germani, A., Biddle, A., D'Alessandro, D., Strollo, R., Patrizi, M.P., Lazzari, L., Nye, E., Otto, W.R., Pozzilli, P. & Alison, M.R. 2012. Pre-culturing human adipose tissue mesenchymal stem cells under hypoxia increases their adipogenic and osteogenic differentiation potentials. Cell Proliferation, 45(3): 225–238. doi: 10.1111/j.1365-2184.2012.00817.x ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000302904100005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesVeronesi, F., Pagani, S., Della Bella, E., Giavaresi & G., Fini, M. 2014. Estrogen deficiency does not decrease the in vitro osteogenic potential of rat adipose-derived mesenchymal stem cells. Age (Dordrecht, Netherlands), 36(3): 9647. doi: 10.1007/s11357-014-9647-yen
dc.referencesXu, L., Sun, X., Cao, K., Wu, Y., Zou, D., Liu, Y., Zhang, X., Zhang, X., Wang, G., Huang, Q. & Jiang, X. 2014. Hypoxia induces osteogenesis in rabbit adipose-derived stem cells overexpressing bone morphogenic protein-2. Oral Diseases, 20(5): 430–439. doi: 10.1111/odi.12148 ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000337693000002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesZhang, W., Zhang, X., Wang, S., Xu, L., Zhang, M., Wang, G., Jin, Y., Zhang, X. & Jiang, X. 2013. Comparison of the use of adipose tissue-derived and bone marrow-derived stem cells for rapid bone regeneration. Journal of Dental Research, 92(12): 1136–1141. doi: 10.1177/0022034513507581 ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000329490300015&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesZhang, Y., Madhu, V., Dighe, A.S., Irvine, J.N. Jr & Cui, Q. 2012. Osteogenic response of human adipose-derived stem cells to BMP-6, VEGF, and combined VEGF plus BMP-6 in vitro. Growth Factors, 30(5): 333–343. ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000309291600007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesZuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P. & Hedrick, M.H. 2001. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7(2): 211–228. doi: 10.1089/107632701300062859en
dc.contributor.authorEmailSkubis, Aleksandra - aleksandra.skubis@gmail.comen
dc.identifier.doi10.1515/fobio-2016-0004en


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.