Pokaż uproszczony rekord

dc.contributor.authorBijak, M.
dc.contributor.authorZiewiecki, R.
dc.contributor.authorSaluk-Bijak, Joanna
dc.contributor.authorPonczek, Michał
dc.contributor.authorPawlaczyk, I.
dc.contributor.authorKrotkiewski, H.
dc.contributor.authorWachowicz, B.
dc.contributor.authorNowak, P.
dc.date.accessioned2016-05-14T14:15:38Z
dc.date.available2016-05-14T14:15:38Z
dc.date.issued2014
dc.identifier.issn1054-2523
dc.identifier.urihttp://hdl.handle.net/11089/18051
dc.description.abstractThrombin, also known as an active plasma coagulation factor II, belongs to the family of serine proteases and plays a crucial role in blood coagulation process. The process of thrombin generation is the central event of the hemostatic process and regulates blood coagulant activity. For this reason, thrombin inhibition is key to successful novel antithrombotic pharmacotherapy. The aim of our present study was to examine the effects of the well-known polyphenolic compounds on the activity of thrombin, by characterization of its interaction with selected polyphenols using different biochemical methods and biosensor BIAcore analyses. Only six compounds, cyanidin, quercetin, silybin, cyanin, (+)-catechin and (−)-epicatechin, of all examined in this study polyphenols caused the inhibition of thrombin amidolytic activity. But only three of the six compounds (cyanidin, quercetin and silybin) changed thrombin proteolytic activity. BIAcore analyses demonstrated that cyanidin and quercetin caused a strong response in the interaction with immobilized thrombin, while cyanin and (−)-epicatechin induced a low response. Lineweaver–Burk curves show that used polyphenol aglycones act as competitive thrombin inhibitors. Our results suggest that polyphenolic compounds might be potential structural bases and source to find and project nature-based, safe, orally bioavailable direct thrombin inhibitors.pl_PL
dc.description.sponsorshipThis work was supported by Grant 545/485 and Grant 506/810 from the University of Lodz.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer USpl_PL
dc.relation.ispartofseriesMedicinal Chemistry Research;5
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectThrombinpl_PL
dc.subjectPolyphenolic compoundspl_PL
dc.subjectFlavonoidspl_PL
dc.subjectProteolytic activitypl_PL
dc.subjectInhibitionpl_PL
dc.titleThrombin inhibitory activity of some polyphenolic compoundspl_PL
dc.typeArticlepl_PL
dc.page.number2324-2337pl_PL
dc.contributor.authorAffiliationUniversity of Lodz, Faculty of Biology and Environmental Protectionpl_PL
dc.contributor.authorAffiliationWroclaw University of Technology, Faculty of Chemistrypl_PL
dc.contributor.authorAffiliationPolish Academy of Sciences, Institute of Immunology and Experimental Therapypl_PL
dc.identifier.eissn1554-8120
dc.referencesAsmis L, Tanner FC, Sudano I, Luscher TF, Camici GG (2010) DMSO inhibits human platelet activation through cyclooxygenase-1 inhibition. A novel agent for drug eluting stents? Biochem Biophys Res Commun 391:1629–1633pl_PL
dc.referencesBajzar L (2000) Thrombin activatable fibrinolysis inhibitor and an antifibrinolytic pathway. Arterioscler Thromb Vasc Biol 20:2511–2518pl_PL
dc.referencesBIAcore (1994) BIAapplications handbook. Pharmacia Biosensor AB, Uppsalapl_PL
dc.referencesBijak M, Bobrowski M (2010) The importance of thrombin inhibitors in the antithrombotic pharmacotherapy. Prog Med 10:819–825pl_PL
dc.referencesBijak M, Bobrowski M, Borowiecka M, Podsedek A, Golanski J, Nowak P (2011) Anticoagulant effect of polyphenols-rich extracts from black chokeberry and grape seeds. Fitoterapia 82:811–817pl_PL
dc.referencesBijak M, Gajak A, Nowak P (2013a) Hemostatic and cellular functions of factor XIII. Pol Merkur Lekarski 34:71–74pl_PL
dc.referencesBijak M, Saluk J, Ponczek MB, Nowak P (2013b) Antithrombin effect of polyphenol-rich extracts from black chokeberry and grape seeds. Phytother Res 27:71–76pl_PL
dc.referencesBjelakovic G, Stojanovic I, Bjelakovic G, Pavlovic D, Kocic G, Dakovic-Milic A (2002) Competitive inhibitors of enzymes and their therapeutic application. Facta universitatis Ser Med Biol 9:201–206pl_PL
dc.referencesBrummel-Ziedins KE, Vossen CY, Butenas S, Mann KG, Rosendaal FR (2005) Thrombin generation profiles in deep venous thrombosis. J Thromb Haemost 3:2497–2505pl_PL
dc.referencesChua TK, Koh HL (2006) Medicinal plants as potential sources of lead compounds with anti-platelet and anti-coagulant activities. Mini Rev Med Chem 6:611–624pl_PL
dc.referencesCrawley JT, Zanardelli S, Chion CK, Lane DA (2007) The central role of thrombin in hemostasis. J Thromb Haemost 5(suppl 1):95–101pl_PL
dc.referencesCuccioloni M, Mozzicafreddo M, Bonfili L, Cecarini V, Eleuteri AM, Angeletti M (2009a) Natural occurring polyphenols as template for drug design. Focus on serine proteases. Chem Biol Drug Des 74:1–15pl_PL
dc.referencesCuccioloni M, Mozzicafreddo M, Sparapani L, Spina M, Eleuteri AM, Fioretti E, Angeletti M (2009b) Pomegranate fruit components modulate human thrombin. Fitoterapia 80:301–305pl_PL
dc.referencesDoolittle RF, Schubert D, Schwartz SA (1967) Amino acid sequence studies on artiodactyl fibrinopeptides I. Dromedary camel, mule deer, and Cape buffalo. Arch Biochem Biophys 118:456–467pl_PL
dc.referencesEichinger S (2008) Thrombin generation and venous thromboembolism. Hamostaseologie 28:37–39pl_PL
dc.referencesFaber CG, Lodder J, Kessels F, Troost J (2003) Thrombin generation in platelet-rich plasma as a tool for the detection of hypercoagulability in young stroke patients. Pathophysiol Haemost Thromb 33:52–58pl_PL
dc.referencesFivash M, Towler EM, Fisher RJ (1998) BIAcore for macromolecular interaction. Curr Opin Biotechnol 9:97–101pl_PL
dc.referencesHedstrom L (2002) Serine protease mechanism and specificity. Chem Rev 102:4501–4524pl_PL
dc.referencesHirano K, Kanaide H (2003) Role of protease-activated receptors in the vascular system. J Atheroscler Thromb 10:211–225pl_PL
dc.referencesHoffman M, Monroe DM (2007) Coagulation 2006: a modern view of hemostasis. Hematol Oncol Clin N Am 21:1–11pl_PL
dc.referencesJedinak A, Maliar T, Grancai D, Nagy M (2006) Inhibition activities of natural products on serine proteases. Phytother Res 20:214–217pl_PL
dc.referencesLi NG, Song SL, Shen MZ, Tang YP, Shi ZH, Tang H, Shi QP, Fu YF, Duan JA (2012) Mannich bases of scutellarein as thrombin-inhibitors: design, synthesis, biological activity and solubility. Bioorg Med Chem 20:6919–6923pl_PL
dc.referencesLineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666pl_PL
dc.referencesLiu L, Ma H, Yang N, Tang Y, Guo J, Tao W, Duan J (2010) A series of natural flavonoids as thrombin inhibitors: structure-activity relationships. Thromb Res 126:e365–e378pl_PL
dc.referencesLottenberg R, Hall JA, Fenton JW, Jackson CM (1982) The action of thrombin on peptide p-nitroanilide substrates: hydrolysis of Tos-Gly-Pro-Arg-pNA and D-Phe-Pip-Arg-pNA by human alpha and gamma and bovine alpha and beta-thrombins. Thromb Res 28:313–332pl_PL
dc.referencesManach C, Williamson G, Morand C, Scalbert A, Remesy C (2005) Bioavailability and bioefficacy of polyphenols in humans I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230S–242Spl_PL
dc.referencesMann KG, Brummel-Ziedins K, Orfeo T, Butenas S (2006) Models of blood coagulation. Blood Cells Mol Dis 36:108–117pl_PL
dc.referencesMcMichael M (2012) New models of hemostasis. Top Companion Anim Med 27:40–45pl_PL
dc.referencesMozzicafreddo M, Cuccioloni M, Eleuteri AM, Fioretti E, Angeletti M (2006) Flavonoids inhibit the amidolytic activity of human thrombin. Biochimie 88:1297–1306pl_PL
dc.referencesMuszbek L, Yee VC, Hevessy Z (1999) Blood coagulation factor XIII: structure and function. Thromb Res 94:271–305pl_PL
dc.referencesNowak P, Zbikowska HM, Ponczek M, Kolodziejczyk J, Wachowicz B (2007) Different vulnerability of fibrinogen subunits to oxidative/nitrative modifications induced by peroxynitrite: functional consequences. Thromb Res 121:163–174pl_PL
dc.referencesOfosu FA (2006) Review: laboratory markers quantifying prothrombin activation and actions of thrombin in venous and arterial thrombosis do not accurately assess disease severity or the effectiveness of treatment. Thromb Haemost 96:568–577pl_PL
dc.referencesPawlaczyk I, Czerchawski L, Pilecki W, Lamer-Zarawska E, Gancarz R (2009) Polyphenolic–polysaccharide compounds from selected medicinal plants of Asteraceae and Rosaceae families: chemical characterization and blood anticoagulant activity. Carbohydr Polym 77:568–575pl_PL
dc.referencesPawlaczyk I, Czerchawski L, Kuliczkowski W, Karolko B, Pilecki W, Witkiewicz W, Gancarz R (2011) Anticoagulant and anti-platelet activity of polyphenolic–polysaccharide preparation isolated from the medicinal plant Erigeron canadensis L. Thromb Res 127:328–340pl_PL
dc.referencesPawlaczyk I, Lewik-Tsirigotis M, Capek P, Matulova M, Sasinkova V, Dabrowski P, Witkiewicz W, Gancarz R (2013) Effects of extraction condition on structural features and anticoagulant activity of F. vesca L. conjugates. Carbohydr Polym 92:741–750pl_PL
dc.referencesPuente XS, Sanchez LM, Gutierrez-Fernandez A, Velasco G, Lopez-Otin C (2005) A genomic view of the complexity of mammalian proteolytic systems. Biochem Soc Trans 33:331–334pl_PL
dc.referencesRawlings ND, Barrett AJ, Bateman A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 40:D343–D350pl_PL
dc.referencesSaluk-Juszczak J, Olas B, Pawlaczyk I, Gancarz R, Wachowicz B (2007) Effects of the extract from Conyza canadensis on human blood platelet aggregation. Gen Physiol Biophys 26:150–152pl_PL
dc.referencesSaluk-Juszczak J, Olas B, Nowak P, Staron A, Wachowicz B (2008) Protective effects of d-glucaro-1,4-lactone against oxidative modifications in blood platelets. Nutr Metab Cardiovasc Dis 18:422–428pl_PL
dc.referencesShi ZH, Li NG, Tang YP, Wei L, Lian Y, Yang JP, Hao T, Duan JA (2012) Metabolism-based synthesis, biologic evaluation and SARs analysis of O-methylated analogs of quercetin as thrombin inhibitors. Eur J Med Chem 54:210–222pl_PL
dc.referencesSmid M, Dielis AW, Winkens M, Spronk HM, van OR, Hamulyak K, Prins MH, Rosing J, Waltenberger JL, Ten CH (2011) Thrombin generation in patients with a first acute myocardial infarction. J Thromb Haemost 9:450–456pl_PL
dc.referencesSonder SA, Fenton JW (1986) Thrombin specificity with tripeptide chromogenic substrates: comparison of human and bovine thrombins with and without fibrinogen clotting activities. Clin Chem 32:934–937pl_PL
dc.referencesTorreri P, Ceccarini M, Macioce P, Petrucci TC (2005) Biomolecular interactions by surface plasmon resonance technology. Ann Ist Super Sanita 41:437–441pl_PL
dc.referencesUllah MF, Khan MW (2008) Food as medicine: potential therapeutic tendencies of plant derived polyphenolic compounds. Asian Pac J Cancer Prev 9:187–195pl_PL
dc.referencesWalkowiak B, Kralisz U, Michalec L, Majewska E, Koziolkiewicz W, Ligocka A, Cierniewski CS (2000) Comparison of platelet aggregability and P-selectin surface expression on platelets isolated by different methods. Thromb Res 99:495–502pl_PL
dc.referencesWolberg AS (2007) Thrombin generation and fibrin clot structure. Blood Rev 21:131–142pl_PL
dc.contributor.authorEmailmbijak@biol.uni.lodz.plpl_PL
dc.identifier.doi10.1007/s00044-013-0829-4
dc.relation.volume23pl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 3.0 Polska