Show simple item record

dc.contributor.authorCı̅rulis, Ja̅nis
dc.date.accessioned2016-04-28T09:40:41Z
dc.date.available2016-04-28T09:40:41Z
dc.date.issued2015
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/17903
dc.description.abstractAn MV-algebra is an algebra (A, ⊕, ¬, 0), where (A, ⊕, 0) is a commutative monoid and ¬ is an idempotent operation on A satisfying also some additional axioms. Basic algebras are similar algebras that can roughly be characterised as nonassociative (hence, also non-commutative) generalizations of MV-algebras. Basic algebras and commutative basic algebras provide an equivalent algebraic semantics in the sense of Blok and Pigozzi for two recent logical systems. Both are Hilbert-style systems, with implication and negation as the primitive connectives. We present a considerably simpler logic, Lʙ, for basic algebras, where implication and falsum are taken as primitives. We also consider some subvarieties of basic algebras known in the literature, discuss classes of implicational algebras term-equivalent to each of these varieties, and construct axiomatic extensions of Lʙ for which these classes serve as equivalent algebraic semantics.pl_PL
dc.description.sponsorshipThis work was supported by Latvian Council of Science, Grant No. 271/2012.pl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofseriesBulletin of the Section of Logic;3/4
dc.titleSimple Logics for Basic Algebraspl_PL
dc.typeArticlepl_PL
dc.rights.holder© Copyright by Ja̅nis Cı̅rulis, Łódź 2015; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2015pl_PL
dc.page.number95–110pl_PL
dc.contributor.authorAffiliationInstitute of Mathematics and Computer Science, University of Latvia, Raina b., 29, Riga LV-1459, Latvia.pl_PL
dc.identifier.eissn2449-836X
dc.referencesBotur M., Halaš R., Commutative basic algebras and non-associative fuzzy logics, Arch. Math. Logic, 48 (2009), pp. 243–255.pl_PL
dc.referencesBlok W.J., Pigozzi D., Algebraizable logics, Mem. Amer. Math. no. 296, Providence, Rhode Island (1989).pl_PL
dc.referencesChajda I., Basic algebras and their applications, an overview, in: Czermak, J. (ed.) et al., Klagenfurt: Verlag Johannes Heyn. Contributions to General Algebra, 20 (2012), pp. 1-10.pl_PL
dc.referencesChajda I., The propositional logic induced by means of basic algebras, Int. J. Theor. Phys., 54 (2015), pp. 4306-4312.pl_PL
dc.referencesChajda I., Basic algebras, logics, trends and applications, Asian-Eur. J. Math. 08, 1550040 (2015) [46 pages].pl_PL
dc.referencesChajda I., Halaš R., On varieties of basic algebras, Soft Comput., 19 (2015), pp. 261–267.pl_PL
dc.referencesChajda I., Halaš R., Kühr J., Semilattice Structures, Heldermann Verlag, Lemgo (2007).pl_PL
dc.referencesChajda I., Halaš R., Kühr J., Many-valued quantum algebras, Algebra Universalis, 60 (2009), pp. 63–90.pl_PL
dc.referencesChajda I., Kolařík M., Independence of axiom system of basic algebras, Soft Computing, 13 (2009), 41–43.pl_PL
dc.referencesChajda I., Kühr J., Basic algebras, RIMS Kokyuroku, Univ. of Kyoto, 1846 (2013), 1-13.pl_PL
dc.referencesChajda I., Kolařík M., Švrček F., Implication and equivalential reducts of basic algebras, Acta Univ. Palacki Olomouc, Fac. rer. nat., Mathematica, 49 (2010), 21–36.pl_PL
dc.referencesCı̅rulis J., Implication in sectionally pseudocomplemented posets, Acta Sci. Math. (Szeged), 74 (2008), 477–491.pl_PL
dc.referencesCı̅rulis J., Residuation subreducts of pocrigs, Bull. Sect. Logic (Łódź), 39 (2010), 11–16.pl_PL
dc.referencesCı̅rulis J., On commutative weak BCK-algebras, arXiv:1304:0999.pl_PL
dc.referencesCı̅rulis J., Quasi-orthomodular posets and weak BCK-algebras, Order 31 (2014), 403–419.pl_PL
dc.referencesCı̅rulis J., On some classes of commutative weak BCK-algebras, Studia Logica, 103 (2015), 479–490.pl_PL
dc.referencesMundici D., MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Jap., 31 (1986), 889-894.pl_PL
dc.contributor.authorEmailjanis.cirulis@lu.lvpl_PL
dc.identifier.doi10.18778/0138-0680.44.3.4.01
dc.relation.volume44pl_PL


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record