Show simple item record

dc.contributor.authorKoszarska, Magdalena
dc.contributor.authorKucsma, Nora
dc.contributor.authorKiss, Katalin
dc.contributor.authorVarady, Gyorgy
dc.contributor.authorGera, Melinda
dc.contributor.authorAntalffy, Geza
dc.contributor.authorAndrikovics, Hajnalka
dc.contributor.authorTordai, Attila
dc.contributor.authorStudzian, Maciej
dc.contributor.authorStrapagiel, Dominik
dc.contributor.authorPulaski, Lukasz
dc.contributor.authorTani, Yoshihiko
dc.contributor.authorSarkadi, Balazs
dc.contributor.authorSzakacs, Gergely
dc.date.accessioned2016-04-12T10:20:00Z
dc.date.available2016-04-12T10:20:00Z
dc.date.issued2014
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/11089/17783
dc.description.abstractLan is a high-incidence blood group antigen expressed in more than 99.9% of the population. Identification of the human ABC transporter ABCB6 as the molecular basis of Lan has opened the way for studies assessing the relation of ABCB6 function and expression to health and disease. To date, 34 ABCB6 sequence variants have been described in association with reduced ABCB6 expression based on the genotyping of stored blood showing weak or no reactivity with anti-Lan antibodies. In the present study we examined the red blood cell (RBC) surface expression of ABCB6 by quantitative flow cytometry in a cohort of 47 healthy individuals. Sequencing of the entire coding region of the ABCB6 gene in low RBC ABCB6 expressors identified a new allele (IVS9+1G>A, affecting a putative splice site at the boundary of exon 9) and two nonsynonymous SNPs listed in the SNP database (R192Q (rs150221689) and G588 S (rs145526996)). The R192Q mutation showed co-segregation with reduced RBC ABCB6 expression in a family, and we found the G588 S mutation in a compound heterozygous individual with undetectable ABCB6 expression, suggesting that both mutations result in weak or no expression of ABCB6 on RBCs. Analysis of the intracellular expression pattern in HeLa cells by confocal microscopy indicated that these mutations do not compromise overall expression or the endolysosomal localization of ABCB6. Genotyping of two large cohorts, containing 235 and 1039 unrelated volunteers, confirmed the high allele frequency of Lan-mutations. Our results suggest that genetic variants linked to lower or absent cell surface expression of ABCB6/Langereis may be more common than previously thought.pl_PL
dc.description.sponsorshipThis work was supported by the Lendulet Program of the Hungarian Academy of Sciences (GS), OTKA 83533 and by the Polish POIG grant 01.01.02-10-005/08 TESTOPLEK, supported by the EU through the European Regional Development Fund. Hajnalka Andrikovics is a recipient of the Janos Bolyai Research Scholarship from the Hungarian Academy of Sciences. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank Dr. Camilo Toro and Dr. William Gahl of the NIH Undiagnosed Diseases Program for an affected patient specimen; that work was supported by the Intramural Research Program of the National Human Genome Research Institute and the Office of the Director of the NIH. We thank Lionel Arnaud (National Institute of Blood Transfusion (INTS), Paris, France) for helpful discussions.pl_PL
dc.language.isoenpl_PL
dc.publisherPLOSpl_PL
dc.relation.ispartofseriesPLOS One;10
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.titleScreening the Expression of ABCB6 in Erythrocytes Reveals an Unexpectedly High Frequency of Lan Mutations in Healthy Individualspl_PL
dc.typeArticlepl_PL
dc.page.number1-11pl_PL
dc.contributor.authorAffiliationHungarian National Blood Transfusion Servicepl_PL
dc.contributor.authorAffiliationHungarian Academy of Sciences, Institute of Enzymologypl_PL
dc.contributor.authorAffiliationSemmelweis Universitypl_PL
dc.contributor.authorAffiliationUniversity of Lodz, Department of Molecular Biophysicspl_PL
dc.contributor.authorAffiliationJapanese Red Cross Kinki Block Blood Centerpl_PL
dc.referencesHiggins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8: 67–113. doi: 10.1146/annurev.cb.08.110192.000435pl_PL
dc.referencesDean M, Rzhetsky A, Allikmets R (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11: 1156–1166. doi: 10.1101/gr.gr-1649rpl_PL
dc.referencesTürk D, Szakács G (2009) Relevance of multidrug resistance in the age of targeted therapy. Curr Opin Drug Discov Devel 12: 246–252pl_PL
dc.referencesParcej D, Tampé R (2010) ABC proteins in antigen translocation and viral inhibition. Nat Chem Biol 6: 572–580 doi:10.1038/nchembio.410pl_PL
dc.referencesVan Helvoort A, Smith AJ, Sprong H, Fritzsche I, Schinkel AH, et al. (1996) MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 87: 507–517. doi: 10.1016/s0092-8674(00)81370-7pl_PL
dc.referencesStieger B, Meier Y, Meier PJ (2007) The bile salt export pump. Pflüg Arch Eur J Physiol 453: 611–620 doi:10.1007/s00424-006-0152-8pl_PL
dc.referencesKrishnamurthy PC, Du G, Fukuda Y, Sun D, Sampath J, et al. (2006) Identification of a mammalian mitochondrial porphyrin transporter. Nature 443: 586–589 doi:10.1038/nature05125pl_PL
dc.referencesUlrich DL, Lynch J, Wang Y, Fukuda Y, Nachagari D, et al. (2012) ATP-dependent mitochondrial porphyrin importer ABCB6 protects against phenylhydrazine toxicity. J Biol Chem 287: 12679–12690 doi:10.1074/jbc.M111.336180pl_PL
dc.referencesPaterson JK, Shukla S, Black CM, Tachiwada T, Garfield S, et al. (2007) Human ABCB6 localizes to both the outer mitochondrial membrane and the plasma membrane. Biochemistry (Mosc) 46: 9443–9452 doi:10.1021/bi700015 mpl_PL
dc.referencesTsuchida M, Emi Y, Kida Y, Sakaguchi M (2008) Human ABC transporter isoform B6 (ABCB6) localizes primarily in the Golgi apparatus. Biochem Biophys Res Commun 369: 369–375 doi:10.1016/j.bbrc.2008.02.027pl_PL
dc.referencesBagshaw RD, Mahuran DJ, Callahan JW (2005) A proteomic analysis of lysosomal integral membrane proteins reveals the diverse composition of the organelle. Mol Cell Proteomics 4: 133–143 doi:10.1074/mcp.M400128-MCP200pl_PL
dc.referencesSchroder B, Wrocklage C, Pan C, Jager R, Kosters B, et al. (2007) Integral and associated lysosomal membrane proteins. Traffic 8: 1676–1686 doi:10.1111/j.1600-0854.2007.00643.x.pl_PL
dc.referencesDella Valle MC, Sleat DE, Zheng H, Moore DF, Jadot M, et al. Classification of subcellular location by comparative proteomic analysis of native and density-shifted lysosomes. Mol Cell Proteomics 10: M110 006403. doi:10.1074/mcp.M110.006403pl_PL
dc.referencesJalil YA, Ritz V, Jakimenko A, Schmitz-Salue C, Siebert H, et al. (2008) Vesicular localization of the rat ATP-binding cassette half-transporter rAbcb6. Am J Physiol Cell Physiol 294: C579–C590 doi:10.1152/ajpcell.00612.2006pl_PL
dc.referencesKiss K, Brozik A, Kucsma N, Toth A, Gera M, et al. (2012) Shifting the Paradigm: The Putative Mitochondrial Protein ABCB6 Resides in the Lysosomes of Cells and in the Plasma Membrane of Erythrocytes. PLoS ONE 7: e37378 doi:10.1371/journal.pone.0037378pl_PL
dc.referencesHelias V, Saison C, Ballif BA, Peyrard T, Takahashi J, et al. (2012) ABCB6 is dispensable for erythropoiesis and specifies the new blood group system Langereis. Nat Genet advance online publication. Available: http://dx.doi.org/10.1038/ng.1069pl_PL
dc.referencesReid ME, Hue-Roye K, Huang A, Velliquette RW, Tani Y, et al. (2014) Alleles of the LAN blood group system: molecular and serologic investigations. Transfusion (Paris) 54: 398–404 doi:10.1111/trf.12285pl_PL
dc.references1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, et al. (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491: 56–65 doi:10.1038/nature11632pl_PL
dc.referencesWang L, He F, Bu J, Liu X, Du W, et al. (2012) ABCB6 Mutations Cause Ocular Coloboma. Am J Hum Genet. Available: http://www.ncbi.nlm.nih.gov/pubmed/22226084pl_PL
dc.referencesAndolfo I, Alper SL, Delaunay J, Auriemma C, Russo R, et al. (2013) Missense mutations in the ABCB6 transporter cause dominant familialpseudohyperkalemia. Am J Hematol 88: 66–72 doi:10.1002/ajh.23357pl_PL
dc.referencesZhang C, Li D, Zhang J, Chen X, Huang M, et al. (2013) Mutations in ABCB6 Cause Dyschromatosis Universalis Hereditaria. J Invest Dermatol. doi:10.1038/jid.2013.145pl_PL
dc.referencesKasza I, Várady G, Andrikovics H, Koszarska M, Tordai A, et al. (2012) Expression Levels of the ABCG2 Multidrug Transporter in Human Erythrocytes Correspond to Pharmacologically Relevant Genetic Variations. PLoS ONE 7: e48423 doi:10.1371/journal.pone.0048423pl_PL
dc.referencesKuśnierz-Alejska G, Wiecek B (1993) [Lan antigen of erythrocytes and clinical significance of anti-Lan antibody]. Acta Haematol Pol 24: 169–175pl_PL
dc.referencesGahl WA, Markello TC, Toro C, Fajardo KF, Sincan M, et al. (2012) The National Institutes of Health Undiagnosed Diseases Program: insights into rare diseases. Genet Med Off J Am Coll Med Genet 14: 51–59 doi:10.1038/gim.0b013e318232a005pl_PL
dc.referencesTátrai P, Szepesi Á, Matula Z, Szigeti A, Buchan G, et al. (2012) Combined introduction of Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation. Biochem Biophys Res Commun 422: 28–35 doi:10.1016/j.bbrc.2012.04.088pl_PL
dc.referencesManders EM, Stap J, Brakenhoff GJ, van Driel R, Aten JA (1992) Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. J Cell Sci 103 (Pt 3): 857–862pl_PL
dc.referencesCostes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, et al. (2004) Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J 86: 3993–4003 doi:10.1529/biophysj.103.038422pl_PL
dc.referencesSaison C, Helias V, Peyrard T, Merad L, Cartron J-P, et al. (2013) The ABCB6 mutation p.Arg192Trp is a recessive mutation causing the Lan- blood type. Vox Sang 104: 159–165 doi:10.1111/j.1423-0410.2012.01650.x.pl_PL
dc.referencesAdzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, et al. (2010) A method and server for predicting damaging missense mutations. Nat Methods 7: 248–249 doi:10.1038/nmeth0410-248pl_PL
dc.referencesFader CM, Colombo MI (2006) Addenda Multivesicular Bodies and Autophagy in Erythrocyte Maturation. Autophagy 2: 122–125. doi: 10.4161/auto.2.2.2350pl_PL
dc.referencesPomozi V, Brampton C, Fülöp K, Chen L-H, Apana A, et al. (2014) Analysis of Pseudoxanthoma Elasticum-Causing Missense Mutants of ABCC6 In Vivo; Pharmacological Correction of the Mislocalized Proteins. J Invest Dermatol 134: 946–953 doi:10.1038/jid.2013.482pl_PL
dc.referencesLukacs GL, Verkman AS (2012) CFTR: folding, misfolding and correcting the ΔF508 conformational defect. Trends Mol Med 18: 81–91 doi:10.1016/j.molmed.2011.10.003pl_PL
dc.referencesDaniels G (2009) The molecular genetics of blood group polymorphism. Hum Genet 126: 729–742 doi:10.1007/s00439-009-0738-2pl_PL
dc.referencesDaniels G (2013) Human Blood Groups. John Wiley & Sons. 763 p.pl_PL
dc.referencesWu L, Candille SI, Choi Y, Xie D, Jiang L, et al. (2013) Variation and genetic control of protein abundance in humans. Nature advance online publication. Available: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature12223.html?WT.ec_id=NATURE-20130516. Accessed 1 June 2013.pl_PL
dc.referencesNedelkov D (2008) Population proteomics: Investigation of protein diversity in human populations. PROTEOMICS 8: 779–786 doi:10.1002/pmic.200700501pl_PL
dc.referencesD’Alessandro A, Righetti PG, Zolla L (2010) The Red Blood Cell Proteome and Interactome: An Update. J Proteome Res 9: 144–163 doi:10.1021/pr900831fpl_PL
dc.referencesVárady G, Cserepes J, Németh A, Szabó E, Sarkadi B (2013) Cell surface membrane proteins as personalized biomarkers: where we stand and where we are headed. Biomark Med 7: 803–819 doi:10.2217/bmm.13.90pl_PL
dc.referencesTusnády GE, Sarkadi B, Simon I, Váradi A (2006) Membrane topology of human ABC proteins. FEBS Lett 580: 1017–1022 doi:10.1016/j.febslet.2005.11.040pl_PL
dc.referencesOmasits U, Ahrens CH, Müller S, Wollscheid B (2013) Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics: btt607. doi:10.1093/bioinformatics/btt607pl_PL
dc.referencesHaer-Wigman L, Ait Soussan A, Ligthart P, de Haas M, van der Schoot CE (2014) Molecular analysis of immunized Jr(a-) or Lan- patients and validation of a high-throughput genotyping assay to screen blood donors for Jr(a-) and Lan- phenotypes: Genotyping of the Jr(a-) and Lan- Phenotype. Transfusion (Paris): n/a – n/a. doi:10.1111/trf.12544pl_PL
dc.referencesTanaka M, Yamamuro Y, Takahashi J, Ogasawara K, Osabe T, et al. (2014) Novel alleles of Lan− in Japanese populations: Removal of BRMs in PCs by columns. Transfusion (Paris) 54: 1438–1439 doi:10.1111/trf.12540pl_PL
dc.referencesLiu H, Li Y, Hung KKH, Wang N, Wang C, et al. (2014) Genome-Wide Linkage, Exome Sequencing and Functional Analyses Identify ABCB6 as the Pathogenic Gene of Dyschromatosis Universalis Hereditaria. PLoS ONE 9: e87250 doi:10.1371/journal.pone.0087250pl_PL
dc.referencesCui Y-X, Xia X-Y, Zhou Y, Gao L, Shang X-J, et al. (2013) Novel Mutations of ABCB6 Associated with Autosomal Dominant Dyschromatosis Universalis Hereditaria. PLoS ONE 8: e79808 doi:10.1371/journal.pone.0079808pl_PL
dc.contributor.authorEmailszakacs.gergely@ttk.mta.hupl_PL
dc.identifier.doi10.1371/journal.pone.0111590
dc.relation.volume9pl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa 3.0 Polska