dc.contributor.author | Sadowska-Bartosz, Izabela | |
dc.contributor.author | Bartosz, Grzegorz | |
dc.date.accessioned | 2016-04-11T07:15:11Z | |
dc.date.available | 2016-04-11T07:15:11Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 2314-6133 | |
dc.identifier.uri | http://hdl.handle.net/11089/17754 | |
dc.description.abstract | If aging is due to or contributed by free radical reactions, as postulated by the free radical theory of aging, lifespan of organisms should be extended by administration of exogenous antioxidants. This paper reviews data on model organisms concerning the effects of exogenous antioxidants (antioxidant vitamins, lipoic acid, coenzyme Q, melatonin, resveratrol, curcumin, other polyphenols, and synthetic antioxidants including antioxidant nanoparticles) on the lifespan of model organisms. Mechanisms of effects of antioxidants, often due to indirect antioxidant action or to action not related to the antioxidant properties of the compounds administered, are discussed. The legitimacy of antioxidant supplementation in human is considered. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Hindawi Publishing Corporation | pl_PL |
dc.relation.ispartofseries | BioMed Research International;2014 | |
dc.rights | Uznanie autorstwa 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/pl/ | * |
dc.title | Effect of Antioxidants Supplementation on Aging and Longevity | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 1-17 | pl_PL |
dc.contributor.authorAffiliation | University of Rzeszów, Department of Biochemistry and Cell Biology | pl_PL |
dc.contributor.authorAffiliation | University of Łódź, Department of Molecular Biophysics | pl_PL |
dc.identifier.eissn | 2314-6141 | |
dc.references | S. J. Lin and N. Austriaco, “Aging and cell death in the other yeasts, Schizosaccharomyces pombe and Candida albicans,” FEMS Yeast Research, vol. 14, no. 1, pp. 119–135, 2014 | pl_PL |
dc.references | K. Książek, “Let's stop overlooking bacterial aging,” Biogerontology, vol. 11, no. 6, pp. 717–723, 2010 | pl_PL |
dc.references | K. A. Hughes and R. M. Reynolds, “Evolutionary and mechanistic theories of aging,” Annual Review of Entomology, vol. 50, pp. 421–445, 2005 | pl_PL |
dc.references | J. Viña, C. Borrás, and J. Miquel, “Theories of ageing,” IUBMB Life, vol. 59, no. 4-5, pp. 249–254, 2007 | pl_PL |
dc.references | G. J. Brewer, “Epigenetic oxidative redox shift (EORS) theory of aging unifies the free radical and insulin signaling theories,” Experimental Gerontology, vol. 45, no. 3, pp. 173–179, 2010 | pl_PL |
dc.references | C. A. Cefalu, “Theories and mechanisms of aging,” Clinics in Geriatric Medicine, vol. 27, no. 4, pp. 491–506, 2011 | pl_PL |
dc.references | P. Zimniak, “Relationship of electrophilic stress to aging,” Free Radical Biology and Medicine, vol. 51, no. 6, pp. 1087–1105, 2011 | pl_PL |
dc.references | S. I. Rattan, “Theories of biological aging: genes, proteins, and free radicals,” Free Radical Research, vol. 40, no. 12, pp. 1230–1238, 2006 | pl_PL |
dc.references | S. I. Rattan, V. Kryzch, S. Schnebert, E. Perrier, and C. Nizard, “Hormesis-based anti-aging products: a case study of a novel cosmetic,” Dose-Response, vol. 11, no. 1, pp. 99–108, 2013 | pl_PL |
dc.references | D. Harman, “Aging: a theory based on free radical and radiation chemistry,” The Journal of Gerontology, vol. 11, no. 3, pp. 298–300, 1956 | pl_PL |
dc.references | T. B. Kirkwood and A. Kowald, “The free-radical theory of ageing—older, wiser and still alive,” BioEssays, vol. 34, no. 8, pp. 692–700, 2012 | pl_PL |
dc.references | V. N. Gladyshev, “The free radical theory of aging is dead. Long live the damage theory!,” Antioxidants & Redox Signaling, vol. 20, no. 4, pp. 727–731, 2014 | pl_PL |
dc.references | B. Poeggeler, K. Sambamurti, S. L. Siedlak, G. Perry, M. A. Smith, and M. A. Pappolla, “A novel endogenous indole protects rodent mitochondria and extends rotifer lifespan,” PLoS ONE, vol. 5, no. 4, article e10206, 2010 | pl_PL |
dc.references | V. K. Khavinson, D. M. Izmaylov, L. K. Obukhova, and V. V. Malinin, “Effect of epitalon on the lifespan increase in Drosophila melanogaster,” Mechanisms of Ageing and Development, vol. 120, no. 1–3, pp. 141–149, 2000 | pl_PL |
dc.references | S. Stvolinsky, M. Antipin, K. Meguro, T. Sato, H. Abe, and A. Boldyrev, “Effect of carnosine and its trolox-modified derivatives on life span of Drosophila melanogaster,” Rejuvenation Research, vol. 13, no. 4, pp. 453–457, 2010 | pl_PL |
dc.references | S. Timmers, J. Auwerx, and P. Schrauwen, “The journey of resveratrol from yeast to human,” Aging, vol. 4, no. 3, pp. 146–158, 2012 | pl_PL |
dc.references | A. Lançon, J. J. Michaille, and N. Latruffe, “Effects of dietary phytophenols on the expression of microRNAs involved in mammalian cell homeostasis,” Journal of the Science of Food and Agriculture, vol. 93, no. 13, pp. 3155–3164, 2013 | pl_PL |
dc.references | J. Marchal, F. Pifferi, and F. Aujard, “Resveratrol in mammals: effects on aging biomarkers, age-related diseases, and life span,” Annals of the New York Academy of Sciences, vol. 1290, pp. 67–73, 2013 | pl_PL |
dc.references | L. R. Shen, L. D. Parnell, J. M. Ordovas, and C. Q. Lai, “Curcumin and aging,” Biofactors, vol. 39, no. 1, pp. 133–140, 2013 | pl_PL |
dc.references | K. Kitani, T. Osawa, and T. Yokozawa, “The effects of tetrahydrocurcumin and green tea polyphenol on the survival of male C57BL/6 mice,” Biogerontology, vol. 8, no. 5, pp. 567–573, 2007 | pl_PL |
dc.references | A. Cañuelo, B. Gilbert-López, P. Pacheco-Liñán, E. Martínez-Lara, E. Siles, and A. Miranda-Vizuete, “Tyrosol, a main phenol present in extra virgin olive oil, increases lifespan and stress resistance in Caenorhabditis elegans,” Mechanisms of Ageing and Development, vol. 133, no. 8, pp. 563–574, 2012 | pl_PL |
dc.references | V. P. Skulachev, “How to clean the dirtiest place in the cell: cationic antioxidants as intramitochondrial ROS scavengers,” IUBMB Life, vol. 57, no. 4-5, pp. 305–310, 2005 | pl_PL |
dc.references | V. N. Anisimov, M. V. Egorov, M. S. Krasilshchikova et al., “Effects of the mitochondria-targeted antioxidant SkQ1 on lifespan of rodents,” Aging, vol. 3, no. 11, pp. 1110–1119, 2011 | pl_PL |
dc.references | Y. T. Lam, R. Stocker, and I. W. Dawes, “The lipophilic antioxidants α-tocopherol and coenzyme Q10 reduce the replicative lifespan of Saccharomyces cerevisiae,” Free Radical Biology and Medicine, vol. 49, no. 2, pp. 237–244, 2010 | pl_PL |
dc.references | H. Yazawa, H. Iwahashi, Y. Kamisaka, K. Kimura, and H. Uemura, “Production of polyunsaturated fatty acids in yeast Saccharomyces cerevisiae and its relation to alkaline pH tolerance,” Yeast, vol. 26, no. 3, pp. 167–184, 2009 | pl_PL |
dc.references | K. Pallauf, J. K. Bendall, C. Scheiermann et al., “Vitamin C and lifespan in model organisms,” Food Chemistry and Toxicology, vol. 58, pp. 255–263, 2013 | pl_PL |
dc.references | I. M. Ernst, K. Pallauf, J. K. Bendall et al., “Vitamin E supplementation and lifespan in model organisms,” Ageing Research Reviews, vol. 12, no. 1, pp. 365–375, 2013 | pl_PL |
dc.references | C. Selman, J. S. McLaren, A. R. Collins, G. G. Duthie, and J. R. Speakman, “Deleterious consequences of antioxidant supplementation on lifespan in a wild-derived mammal,” Biology Letters, vol. 9, no. 4, Article ID 20130432, 2013 | pl_PL |
dc.references | K. L. Hector, M. Lagisz, and S. Nakagawa, “The effect of resveratrol on longevity across species: a meta-analysis,” Biology Letters, vol. 8, no. 5, pp. 790–793, 2012 | pl_PL |
dc.references | G. Vecchio, A. Galeone, V. Brunetti et al., “Concentration-dependent, size-independent toxicity of citrate capped AuNPs in Drosophila melanogaster,” PLoS ONE, vol. 7, no. 1, article e29980, 2012 | pl_PL |
dc.references | J. Kim, M. Takahashi, T. Shimizu et al., “Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans,” Mechanisms of Ageing and Development, vol. 129, no. 6, pp. 322–331, 2008 | pl_PL |
dc.references | K. L. Quick, S. S. Ali, R. Arch, C. Xiong, D. Wozniak, and L. L. Dugan, “A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice,” Neurobiology of Aging, vol. 29, no. 1, pp. 117–128, 2008 | pl_PL |
dc.references | S. R. Spindler, P. L. Mote, and J. M. Flegal, “Lifespan effects of simple and complex nutraceutical combinations fed isocalorically to mice,” Age, 2013 | pl_PL |
dc.references | Y. Honda, Y. Fujita, H. Maruyama et al., “Lifespan-extending effects of royal jelly and its related substances on the nematode Caenorhabditis elegans,” PLoS ONE, vol. 6, no. 8, article e23527, 2011 | pl_PL |
dc.references | S. Inoue, S. Koya-Miyata, S. Ushio, K. Iwaki, M. Ikeda, and M. Kurimoto, “Royal Jelly prolongs the life span of C3H/HeJ mice: correlation with reduced DNA damage,” Experimental Gerontology, vol. 38, no. 9, pp. 965–969, 2003 | pl_PL |
dc.references | E. le Bourg, “Hormesis, aging and longevity,” Biochimica et Biophysica Acta, vol. 1790, no. 10, pp. 1030–1039, 2009 | pl_PL |
dc.references | J. M. Carney, P. E. Starke-Reed, C. N. Oliver et al., “Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 9, pp. 3633–3636, 1991 | pl_PL |
dc.references | R. A. Shetty, M. J. Forster, and N. Sumien, “Coenzyme Q(10) supplementation reverses age-related impairments in spatial learning and lowers protein oxidation,” Age, vol. 35, no. 5, pp. 1821–1834, 2013 | pl_PL |
dc.references | L. Partridge and D. Gems, “Mechanisms of ageing: public or private?” Nature Reviews Genetics, vol. 3, no. 3, pp. 165–175, 2002 | pl_PL |
dc.references | T. Biliński, R. Zadrąg-Tęcza, and G. Bartosz, “Hypertrophy hypothesis as an alternative explanation of the phenomenon of replicative aging of yeast,” FEMS Yeast Research, vol. 12, no. 1, pp. 97–101, 2012 | pl_PL |
dc.references | R. Zadrag, G. Bartosz, and T. Bilinski, “Is the yeast a relevant model for aging of multicellular organisms? An insight from the total lifespan of Saccharomyces cerevisiae,” Current Aging Science, vol. 1, no. 3, pp. 159–165, 2008 | pl_PL |
dc.references | G. Bánhegyi, L. Braun, M. Csala, F. Puskás, and J. Mandl, “Ascorbate metabolism and its regulation in animals,” Free Radical Biology and Medicine, vol. 23, no. 5, pp. 793–803, 1997 | pl_PL |
dc.references | A. Shibamura, T. Ikeda, and Y. Nishikawa, “A method for oral administration of hydrophilic substances to Caenorhabditis elegans: effects of oral supplementation with antioxidants on the nematode lifespan,” Mechanisms of Ageing and Development, vol. 130, no. 9, pp. 652–655, 2009 | pl_PL |
dc.references | E. le Bourg, “Oxidative stress, aging and longevity in Drosophila melanogaster,” FEBS Letters, vol. 498, no. 2-3, pp. 183–186, 2001 | pl_PL |
dc.references | S. A. Farr, T. O. Price, W. A. Banks, N. Ercal, and J. E. Morley, “Effect of alpha-lipoic acid on memory, oxidation, and lifespan in SAMP8 mice,” Journal of Alzheimer's Disease, vol. 32, no. 2, pp. 447–455, 2012 | pl_PL |
dc.references | Y. L. Xue, T. Ahiko, T. Miyakawa et al., “Isolation and Caenorhabditis elegans lifespan assay of flavonoids from onion,” Journal of Agricultural and Food Chemistry, vol. 59, no. 11, pp. 5927–5934, 2011 | pl_PL |
dc.references | P. B. Pun, J. Gruber, S. Y. Tang et al., “Ageing in nematodes: do antioxidants extend lifespan in Caenorhabditis elegans?” Biogerontology, vol. 11, no. 1, pp. 17–30, 2010 | pl_PL |
dc.references | W. Chen, L. Rezaizadehnajafi, and M. Wink, “Influence of resveratrol on oxidative stress resistance and life span in Caenorhabditis elegans,” Journal of Pharmacy and Pharmacology, vol. 65, no. 5, pp. 682–688, 2013 | pl_PL |
dc.references | K. T. Howitz, K. J. Bitterman, H. Y. Cohen et al., “Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan,” Nature, vol. 425, no. 6954, pp. 191–196, 2003 | pl_PL |
dc.references | S. Ghosh, B. Liu, and Z. Zhou, “Resveratrol activates SIRT1 in a Lamin A-dependent manner,” Cell Cycle, vol. 12, no. 6, pp. 872–876, 2013 | pl_PL |
dc.references | M. Gertz, G. T. Nguyen, F. Fischer, et al., “A molecular mechanism for direct sirtuin activation by resveratrol,” PLoS ONE, vol. 7, no. 11, article e49761, Article ID e49761, 2012 | pl_PL |
dc.references | D. L. Smith Jr., T. R. Nagy, and D. B. Allison, “Calorie restriction: what recent results suggest for the future of ageing research,” European Journal of Clinical Investigation, vol. 40, no. 5, pp. 440–450, 2010 | pl_PL |
dc.references | B. Rascón, B. P. Hubbard, D. A. Sinclair, and G. V. Amdam, “The lifespan extension effects of resveratrol are conserved in the honey bee and may be driven by a mechanism related to caloric restriction,” Aging, vol. 4, no. 7, pp. 499–508, 2012 | pl_PL |
dc.references | C. Burnett, S. Valentini, F. Cabreiro et al., “Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila,” Nature, vol. 477, no. 7365, pp. 482–485, 2011 | pl_PL |
dc.references | J. Chang, A. Rimando, M. Pallas et al., “Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer's disease,” Neurobiology of Aging, vol. 33, no. 9, pp. 2062–2071, 2012 | pl_PL |
dc.references | H. Wen, X. Gao, and J. Qin, “Probing the anti-aging role of polydatin in Caenorhabditis elegans on a chip,” Integrative Biology: Quantitive Biosecences from Nano to Macro, vol. 6, no. 1, pp. 35–43, 2013 | pl_PL |
dc.references | S. Shishodia, “Molecular mechanisms of curcumin action: gene expression,” Biofactors, vol. 39, no. 1, pp. 37–55, 2013 | pl_PL |
dc.references | A. Monroy, G. J. Lithgow, and S. Alavez, “Curcumin and neurodegenerative diseases,” Biofactors, vol. 39, no. 1, pp. 122–132, 2013 | pl_PL |
dc.references | J. M. Witkin and X. Li, “Curcumin, an active constiuent of the ancient medicinal herb Curcuma longa L.: some uses and the establishment and biological basis of medical efficacy,” CNS & Neurological Disorders: Drug Targets, vol. 12, no. 4, pp. 487–497, 2013 | pl_PL |
dc.references | L. Xiang, Y. Nakamura, Y. M. Lim et al., “Tetrahydrocurcumin extends life span and inhibits the oxidative stress response by regulating the FOXO forkhead transcription factor,” Aging, vol. 3, no. 11, pp. 1098–1109, 2011 | pl_PL |
dc.references | Y. Pu, H. Zhang, P. Wang et al., “Dietary curcumin ameliorates aging-related cerebrovascular dysfunction through the AMPK/uncoupling protein 2 pathway,” Cellular Physiology and Biochemistry, vol. 32, no. 5, pp. 1167–1177, 2013 | pl_PL |
dc.references | S. Yanase, Y. Luo, and H. Maruta, “PAK1-deficiency/down-regulation reduces brood size, activates HSP16.2 gene and extends lifespan in Caenorhabditis elegans,” Drug Discoveries & Therapeutics, vol. 7, no. 1, pp. 29–35, 2013 | pl_PL |
dc.references | C. W. Yu, C. C. Wei, and V. H. Liao, “Curcumin-mediated oxidative stress resistance in Caenorhabditis elegans is modulated by age-1, akt-1, pdk-1, osr-1, unc-43, sek-1, skn-1, sir-2.1, and mev-1,” Free Radical Research, vol. 48, no. 3, pp. 371–379, 2014 | pl_PL |
dc.references | K.-S. Lee, B.-S. Lee, S. Semnani et al., “Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster,” Rejuvenation Research, vol. 13, no. 5, pp. 561–570, 2010 | pl_PL |
dc.references | L. R. Shen, F. Xiao, P. Yuan, et al., “Curcumin-supplemented diets increase superoxide dismutase activity and mean lifespan in Drosophila,” Age, vol. 35, no. 4, pp. 1133–1142, 2013 | pl_PL |
dc.references | R. Doonan, J. J. McElwee, F. Matthijssens et al., “Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans,” Genes & Development, vol. 22, no. 23, pp. 3236–3241, 2008 | pl_PL |
dc.references | V. I. Pérez, A. Bokov, H. van Remmen et al., “Is the oxidative stress theory of aging dead?” Biochimica et Biophysica Acta, vol. 1790, no. 10, pp. 1005–1014, 2009 | pl_PL |
dc.references | J. M. van Raamsdonk and S. Hekimi, “Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans,” PLoS Genetics, vol. 5, no. 2, article e1000361, 2009 | pl_PL |
dc.references | J. M. van Raamsdonk and S. Hekimi, “Superoxide dismutase is dispensable for normal animal lifespan,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 15, pp. 5785–5790, 2012 | pl_PL |
dc.references | K. A. Rodriguez, Y. H. Edrey, P. Osmulski, M. Gaczynska, and R. Buffenstein, “Altered composition of liver proteasome assemblies contributes to enhanced proteasome activity in the exceptionally long-lived naked mole-rat,” PLoS ONE, vol. 7, no. 5, article e35890, 2012 | pl_PL |
dc.references | J. W. Gu, K. L. Makey, K. B. Tucker et al., “EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression,” Vascular Cell, vol. 5, no. 1, article 9, 2013 | pl_PL |
dc.references | M. J. Lee, P. Maliakal, L. Chen et al., “Pharmacokinetics of tea catechins after ingestion of green tea and (-)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability,” Cancer Epidemiology, Biomarkers & Prevention, vol. 11, no. 10, part 1, pp. 1025–1032, 2002 | pl_PL |
dc.references | N. T. Zaveri, “Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications,” Life Sciences, vol. 78, no. 18, pp. 2073–2080, 2006 | pl_PL |
dc.references | K. Jomova, D. Vondrakova, M. Lawson, and M. Valko, “Metals, oxidative stress and neurodegenerative disorders,” Molecular and Cellular Biochemistry, vol. 345, no. 1-2, pp. 91–104, 2010 | pl_PL |
dc.references | A. Mähler, S. Mandel, M. Lorenz et al., “Epigallocatechin-3-gallate: a useful, effective and safe clinical approach for targeted prevention and individualised treatment of neurological diseases?” The EPMA Journal, vol. 4, no. 1, article 5, 2013 | pl_PL |
dc.references | O. Weinreb, T. Amit, and M. B. Youdim, “A novel approach of proteomics and transcriptomics to study the mechanism of action of the antioxidant-iron chelator green tea polyphenol (-)-epigallocatechin-3-gallate,” Free Radical Biology and Medicine, vol. 43, no. 4, pp. 546–556, 2007 | pl_PL |
dc.references | Y. Niu, L. Na, R. Feng et al., “The phytochemical, EGCG, extends lifespan by reducing liver and kidney function damage and improving age-associated inflammation and oxidative stress in healthy rats,” Aging Cell, vol. 12, no. 6, pp. 1041–1049, 2013 | pl_PL |
dc.references | B. J. Willcox, T. A. Donlon, Q. He et al., “FOXO3A genotype is strongly associated with human longevity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 37, pp. 13987–13992, 2008 | pl_PL |
dc.references | M. K. Brown, J. L. Evans, and Y. Luo, “Beneficial effects of natural antioxidants EGCG and α-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans,” Pharmacology Biochemistry and Behavior, vol. 85, no. 3, pp. 620–628, 2006 | pl_PL |
dc.references | Q. Meng, C. N. Velalar, and R. Ruan, “Effects of epigallocatechin-3-gallate on mitochondrial integrity and antioxidative enzyme activity in the aging process of human fibroblast,” Free Radical Biology and Medicine, vol. 44, no. 6, pp. 1032–1041, 2008 | pl_PL |
dc.references | S. Davinelli, R. di Marco, R. Bracale, A. Quattrone, D. Zella, and G. Scapagnini, “Synergistic effect of L-Carnosine and EGCG in the prevention of physiological brain aging,” Current Pharmaceutical Design, vol. 19, no. 15, pp. 2722–2727, 2013 | pl_PL |
dc.references | J. Rodrigues, M. Assunção, N. Lukoyanov, A. Cardoso, F. Carvalho, and J. P. Andrade, “Protective effects of a catechin-rich extract on the hippocampal formation and spatial memory in aging rats,” Behavioural Brain Research, vol. 246, pp. 94–102, 2013 | pl_PL |
dc.references | B. Feng, Y. Fang, and S. M. Wei, “Effect and mechanism of epigallocatechin-3-gallate (EGCG) against the hydrogen peroxide-induced oxidative damage in human dermal fibroblasts,” Journal of Cosmetic Science, vol. 64, no. 1, pp. 35–44, 2013 | pl_PL |
dc.references | L. Elbling, R. M. Weiss, O. Teufelhofer et al., “Green tea extract and (-)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities,” The FASEB Journal, vol. 19, no. 7, pp. 807–809, 2005 | pl_PL |
dc.references | A. Furukawa, S. Oikawa, M. Murata, Y. Hiraku, and S. Kawanishi, “(−)-Epigallocatechin gallate causes oxidative damage to isolated and cellular DNA,” Biochemical Pharmacology, vol. 66, no. 9, pp. 1769–1778, 2003 | pl_PL |
dc.references | N. Saul, K. Pietsch, R. Menzel, S. R. Stürzenbaum, and C. E. Steinberg, “Catechin induced longevity in C. elegans: from key regulator genes to disposable soma,” Mechanisms of Ageing and Development, vol. 130, no. 8, pp. 477–486, 2009 | pl_PL |
dc.references | T. Sunagawa, T. Shimizu, T. Kanda, M. Tagashira, M. Sami, and T. Shirasawa, “Procyanidins from apples (Malus pumila Mill.) extend the lifespan of Caenorhabditis elegans,” Planta Medica, vol. 77, no. 2, pp. 122–127, 2011 | pl_PL |
dc.references | S. Bahadorani and A. J. Hilliker, “Cocoa confers life span extension in Drosophila melanogaster,” Nutrition Research, vol. 28, no. 6, pp. 377–382, 2008 | pl_PL |
dc.references | Y. Zuo, C. Peng, Y. Liang et al., “Black rice extract extends the lifespan of fruit flies,” Food & Function, vol. 3, no. 12, pp. 1271–1279, 2012 | pl_PL |
dc.references | G. Grünz, K. Haas, S. Soukup et al., “Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans,” Mechanisms of Ageing and Development, vol. 133, no. 1, pp. 1–10, 2012 | pl_PL |
dc.references | E. L. Abner, F. A. Schmitt, M. S. Mendiondo, J. L. Marcum, and R. J. Krysci, “Vitamin E and all-cause mortality: a meta-analysis,” Current Aging Science, vol. 4, no. 2, pp. 158–170, 201 | pl_PL |
dc.references | V. Calabrese, C. Cornelius, A. T. Dinkova-Kostova et al., “Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity,” Biochimica et Biophysica Acta, vol. 1822, no. 5, pp. 753–783, 2012 | pl_PL |
dc.references | S. I. Rattan, “Rationale and methods of discovering hormetins as drugs for healthy ageing,” Expert Opinion on Drug Discovery, vol. 7, no. 5, pp. 439–448, 2012 | pl_PL |
dc.references | Z. Wu, J. V. Smith, V. Paramasivam et al., “Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans,” Cellular and Molecular Biology, vol. 48, no. 6, pp. 725–731, 2002 | pl_PL |
dc.references | A. Kampkötter, C. G. Nkwonkam, R. F. Zurawski et al., “Investigations of protective effects of the flavonoids quercetin and rutin on stress resistance in the model organism Caenorhabditis elegans,” Toxicology, vol. 234, no. 1-2, pp. 113–123, 2007 | pl_PL |
dc.references | M. Ristow and K. Zarse, “How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis),” Experimental Gerontology, vol. 45, no. 6, pp. 410–418, 2010 | pl_PL |
dc.references | M. Ristow and S. Schmeisser, “Extending life span by increasing oxidative stress,” Free Radical Biology and Medicine, vol. 51, no. 2, pp. 327–336, 2011 | pl_PL |
dc.references | S. Schmeisser, K. Zarse, and M. Ristow, “Lonidamine extends lifespan of adult Caenorhabditis elegans by increasing the formation of mitochondrial reactive oxygen species,” Hormone and Metabolic Research, vol. 43, no. 10, pp. 687–692, 2011 | pl_PL |
dc.references | S. Schmeisser, K. Schmeisser, S. Weimer, et al., “Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension,” Aging Cell, vol. 12, no. 3, pp. 508–517, 2013 | pl_PL |
dc.references | K. Zarse, A. Bossecker, L. Müller-Kuhrt et al., “The phytochemical glaucarubinone promotes mitochondrial metabolism, reduces body fat, and extends lifespan of Caenorhabditis elegans,” Hormone and Metabolic Research, vol. 43, no. 4, pp. 241–243, 2011 | pl_PL |
dc.references | T. J. Schulz, K. Zarse, A. Voigt, N. Urban, M. Birringer, and M. Ristow, “Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress,” Cell Metabolism, vol. 6, no. 4, pp. 280–293, 2007 | pl_PL |
dc.references | G. Bartosz, “Reactive oxygen species: destroyers or messengers?” Biochemical Pharmacology, vol. 77, no. 8, pp. 1303–1315, 2009 | pl_PL |
dc.references | I. Juránek, D. Nikitovic, D. Kouretas, A. W. Hayes, and A. M. Tsatsakis, “Biological importance of reactive oxygen species in relation to difficulties of treating pathologies involving oxidative stress by exogenous antioxidants,” Food Chemistry and Toxicology, vol. 61, pp. 240–247, 2013 | pl_PL |
dc.references | X. Wang, H. Fang, Z. Huang et al., “Imaging ROS signaling in cells and animals,” Journal of Molecular Medicine, vol. 91, no. 8, pp. 917–927, 2013 | pl_PL |
dc.references | H. J. Forman, K. J. Davies, and F. Ursini, “How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo,” Free Radical Biology and Medicine, vol. 66, pp. 24–35, 2014 | pl_PL |
dc.references | I. Sánchez Zaplana and E. Maestre González, “[Feeding and aging],” Revista da Escola de Enfermagem, vol. 36, no. 6, pp. 8–15, 2013 | pl_PL |
dc.references | S. Dato, P. Crocco, P. D'Aquila et al., “Exploring the role of genetic variability and lifestyle in oxidative stress response for healthy aging and longevity,” International Journal of Molecular Sciences, vol. 14, no. 8, pp. 16443–16472, 2013 | pl_PL |
dc.references | P. Chedraui and F. R. Pérez-López, “Nutrition and health during mid-life: searching for solutions and meeting challenges for the aging population,” Climacteric, vol. 16, supplement 1, pp. 85–95, 2013 | pl_PL |
dc.references | C. Chrysohoou and C. Stefanadis, “Longevity and diet. Myth or pragmatism?” Maturitas, vol. 76, no. 4, pp. 303–307, 2013 | pl_PL |
dc.references | C. Chrysohoou, J. Skoumas, C. Pitsavos et al., “Long-term adherence to the Mediterranean diet reduces the prevalence of hyperuricaemia in elderly individuals, without known cardiovascular disease: the Ikaria study,” Maturitas, vol. 70, no. 1, pp. 58–64, 2011 | pl_PL |
dc.references | N. Scarmeas, Y. Stern, R. Mayeux, J. J. Manly, N. Schupf, and J. A. Luchsinger, “Mediterranean diet and mild cognitive impairment,” Archives of Neurology, vol. 66, no. 2, pp. 216–225, 2009 | pl_PL |
dc.references | N. Scarmeas, J. A. Luchsinger, R. Mayeux, and Y. Stern, “Mediterranean diet and Alzheimer disease mortality,” Neurology, vol. 69, no. 11, pp. 1084–1093, 2007 | pl_PL |
dc.references | C. Féart, C. Samieri, V. Rondeau et al., “Adherence to a mediterranean diet, cognitive decline, and risk of dementia,” The Journal of the American Medical Association, vol. 302, no. 6, pp. 638–648, 2009 | pl_PL |
dc.references | N. Cherbuin and K. J. Anstey, “The mediterranean diet is not related to cognitive change in a large prospective investigation: the PATH Through Life Study,” The American Journal of Geriatric Psychiatry, vol. 20, no. 7, pp. 635–639, 2012 | pl_PL |
dc.references | O. E. Titova, E. Ax, S. J. Brooks et al., “Mediterranean diet habits in older individuals: associations with cognitive functioning and brain volumes,” Experimental Gerontology, vol. 48, no. 12, pp. 1443–1448, 2013 | pl_PL |
dc.references | M. G. Bacalini, S. Friso, F. Olivieri et al., “Present and future of anti-ageing epigenetic diets,” Mechanisms of Ageing and Development, 2014 | pl_PL |
dc.references | T. M. Hardy and T. O. Tollefsbol, “Epigenetic diet: impact on the epigenome and cancer,” Epigenomics, vol. 3, no. 4, pp. 503–518, 2011 | pl_PL |
dc.references | S. L. Martin, T. M. Hardy, and T. O. Tollefsbol, “Medicinal chemistry of the epigenetic diet and caloric restriction,” Current Medicinal Chemistry, vol. 20, no. 32, pp. 4050–4059, 2013 | pl_PL |
dc.references | V. A. Brown, K. R. Patel, M. Viskaduraki et al., “Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis,” Cancer Research, vol. 70, no. 22, pp. 9003–9011, 2010 | pl_PL |
dc.references | J. M. Smoliga, E. S. Colombo, and M. J. Campen, “A healthier approach to clinical trials evaluating resveratrol for primary prevention of age-related diseases in healthy populations,” Aging, vol. 5, no. 7, pp. 495–506, 2013 | pl_PL |
dc.references | D. H. Kim, M. A. Hossain, M. Y. Kim, et al., “A novel resveratrol analogue, HS-1793, inhibits hypoxia-induced HIF-1α and VEGF expression, and migration in human prostate cancer cells,” International Journal of Oncology, vol. 43, no. 6, pp. 1915–1924, 2013 | pl_PL |
dc.references | J. A. Kim, D. H. Kim, M. A. Hossain, et al., “HS-1793, a resveratrol analogue, induces cell cycle arrest and apoptotic cell death in human breast cancer cells,” International Journal of Oncology, vol. 44, no. 2, pp. 473–480, 2014 | pl_PL |
dc.references | H. Ota, M. Akishita, H. Tani et al., “trans-resveratrol in Gnetum gnemon protects against oxidative-stress-induced endothelial senescence,” Journal of Natural Products, vol. 76, no. 7, pp. 1242–1247, 2013 | pl_PL |
dc.references | B. S. Fleenor, A. L. Sindler, N. K. Marvi et al., “Curcumin ameliorates arterial dysfunction and oxidative stress with aging,” Experimental Gerontology, vol. 48, no. 2, pp. 269–276, 2013 | pl_PL |
dc.references | A. Ströhle, M. Wolters, and A. Hahn, “[Food supplements—potential and limits: part 3],” Medizinische Monatsschrift für Pharmazeuten, vol. 36, no. 9, pp. 324–340, 2013 | pl_PL |
dc.references | H. Macpherson, A. Pipingas, and M. P. Pase, “Multivitamin-multimineral supplementation and mortality: a meta-analysis of randomized controlled trials,” The American Journal of Clinical Nutrition, vol. 97, no. 2, pp. 437–444, 2013 | pl_PL |
dc.references | G. Bjelakovic, D. Nikolova, and C. Gluud, “Antioxidant supplements and mortality,” Current Opinion in Clinical Nutrition & Metabolic Care, vol. 17, no. 1, pp. 40–44, 2014 | pl_PL |
dc.references | A. Krzepiłko, A. Swieciło, J. Wawryn et al., “Ascorbate restores lifespan of superoxide-dismutase deficient yeast,” Free Radical Research, vol. 38, no. 9, pp. 1019–1024, 2004 | pl_PL |
dc.references | P. J. Minogue and J. N. Thomas, “An α-tocopherol dose response study in Paramecium tetraurelia,” Mechanisms of Ageing and Development, vol. 125, no. 1, pp. 21–30, 2004 | pl_PL |
dc.references | J. N. Thomas and J. Smith-Sonneborn, “Supplemental melatonin increases clonal lifespan in the protozoan Paramecium tetraurelia,” Journal of Pineal Research, vol. 23, no. 3, pp. 123–130, 1997 | pl_PL |
dc.references | M. Sawada and H. E. Enesco, “Vitamin E extends lifespan in the short-lived rotifer Asplanchna brightwelli,” Experimental Gerontology, vol. 19, no. 3, pp. 179–183, 1984 | pl_PL |
dc.references | N. Ishii, N. Senoo-Matsuda, K. Miyake et al., “Coenzyme Q10 can prolong C. elegans lifespan by lowering oxidative stress,” Mechanisms of Ageing and Development, vol. 125, no. 1, pp. 41–46, 2004 | pl_PL |
dc.references | L. A. Harrington and C. B. Harley, “Effect of vitamin E on lifespan and reproduction in Caenorhabditis elegans,” Mechanisms of Ageing and Development, vol. 43, no. 1, pp. 71–78, 1988 | pl_PL |
dc.references | S. Zou, J. Sinclair, M. A. Wilson et al., “Comparative approaches to facilitate the discovery of prolongevity interventions: effects of tocopherols on lifespan of three invertebrate species,” Mechanisms of Ageing and Development, vol. 128, no. 2, pp. 222–226, 2007 | pl_PL |
dc.references | V. H. Liao, C. W. Yu, Y. J. Chu, W. H. Li, Y. C. Hsieh, and T. T. Wang, “Curcumin-mediated lifespan extension in Caenorhabditis elegans,” Mechanisms of Ageing and Development, vol. 132, no. 10, pp. 480–487, 2011 | pl_PL |
dc.references | F. Surco-Laos, J. Cabello, E. Gómez-Orte et al., “Effects of O-methylated metabolites of quercetin on oxidative stress, thermotolerance, lifespan and bioavailability on Caenorhabditis elegans,” Food & Function, vol. 2, no. 8, pp. 445–456, 2011 | pl_PL |
dc.references | M. Dueñas, F. Surco-Laos, S. González-Manzano et al., “Deglycosylation is a key step in biotransformation and lifespan effects of quercetin-3-O-glucoside in Caenorhabditis elegans,” Pharmacological Research, vol. 76, pp. 41–48, 2013 | pl_PL |
dc.references | K. Pietsch, N. Saul, S. Chakrabarti, S. R. Stürzenbaum, R. Menzel, and C. E. Steinberg, “Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid- and rosmarinic acid-mediated life extension in C. elegans,” Biogerontology, vol. 12, no. 4, pp. 329–347, 2011 | pl_PL |
dc.references | S. Abbas and M. Wink, “Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans,” Planta Medica, vol. 75, no. 3, pp. 216–221, 2009 | pl_PL |
dc.references | L. Zhang, G. Jie, J. Zhang, and B. Zhao, “Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress,” Free Radical Biology and Medicine, vol. 46, no. 3, pp. 414–421, 2009 | pl_PL |
dc.references | A. A. Sayed, “Ferulsinaic acid attenuation of advanced glycation end products extends the lifespan of Caenorhabditis elegans,” Journal of Pharmacy and Pharmacology, vol. 63, no. 3, pp. 423–428, 2011 | pl_PL |
dc.references | T. Moriwaki, S. Kato, Y. Kato, A. Hosoki, and Q. M. Zhang-Akiyama, “Extension of lifespan and protection against oxidative stress by an antioxidant herb mixture complex (KPG-7) in Caenorhabditis elegans,” Journal of Clinical Biochemistry and Nutrition, vol. 53, no. 2, pp. 81–88, 2013 | pl_PL |
dc.references | M. Keaney and D. Gems, “No increase in lifespan in Caenorhabditis elegans upon treatment with the superoxide dismutase mimetic EUK-8,” Free Radical Biology and Medicine, vol. 34, no. 2, pp. 277–282, 2003 | pl_PL |
dc.references | J. H. Bauer, S. Goupil, G. B. Garber, and S. L. Helfand, “An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 35, pp. 12980–12985, 2004 | pl_PL |
dc.references | D. M. Izmaylov and L. K. Obukhova, “Geroprotector effectiveness of melatonin: investigation of lifespan of Drosophila melanogaster,” Mechanisms of Ageing and Development, vol. 106, no. 3, pp. 233–240, 1999 | pl_PL |
dc.references | B. K. Suckow and M. A. Suckow, “Lifespan extension by the antioxidant curcumin in Drosophila melanogaster,” International Journal of Biomedical Science, vol. 2, no. 4, pp. 402–405, 2006 | pl_PL |
dc.references | K. T. Chandrashekara and M. N. Shakarad, “Aloe vera or resveratrol supplementation in larval diet delays adult aging in the fruit fly, Drosophila melanogaster,” The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol. 66, no. 9, pp. 965–971, 2011 | pl_PL |
dc.references | C. Peng, Y. Zuo, K. M. Kwan et al., “Blueberry extract prolongs lifespan of Drosophila melanogaster,” Experimental Gerontology, vol. 47, no. 2, pp. 170–178, 2012 | pl_PL |
dc.references | T. Magwere, M. West, K. Riyahi, M. P. Murphy, R. A. Smith, and L. Partridge, “The effects of exogenous antioxidants on lifespan and oxidative stress resistance in Drosophila melanogaster,” Mechanisms of Ageing and Development, vol. 127, no. 4, pp. 356–370, 2006 | pl_PL |
dc.references | R. Banks, J. R. Speakman, and C. Selman, “Vitamin E supplementation and mammalian lifespan,” Molecular Nutrition & Food Research, vol. 54, no. 5, pp. 719–725, 2010 | pl_PL |
dc.references | A. A. Morley and K. J. Trainor, “Lack of an effect of vitamin E on lifespan of mice,” Biogerontology, vol. 2, no. 2, pp. 109–112, 2001 | pl_PL |
dc.references | A. D. Blackett and D. A. Hall, “Vitamin E—its significance in mouse ageing,” Age and Ageing, vol. 10, no. 3, pp. 191–195, 1981 | pl_PL |
dc.references | M. I. Rodríguez, G. Escames, L. C. López et al., “Improved mitochondrial function and increased life span after chronic melatonin treatment in senescent prone mice,” Experimental Gerontology, vol. 43, no. 8, pp. 749–756, 2008 | pl_PL |
dc.contributor.authorEmail | isadowska@poczta.fm | pl_PL |
dc.identifier.doi | 10.1155/2014/404680 | |