dc.contributor.author | Sadowska-Bartosz, Izabela | |
dc.contributor.author | Galiniak, Sabina | |
dc.contributor.author | Bartosz, Grzegorz | |
dc.date.accessioned | 2016-04-07T07:16:17Z | |
dc.date.available | 2016-04-07T07:16:17Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1420-3049 | |
dc.identifier.uri | http://hdl.handle.net/11089/17713 | |
dc.description.abstract | The aim of this study was to compare the kinetics of the glycoxidation of bovine
serum albumin (BSA) as a model protein by three sugars: glucose, fructose and ribose, using
fluorometric measurements of the content of advanced glycation end products (AGEs),
protein-bound fructosamine, dityrosine, N'-formylkynurenine, kynurenine, tryptophan, the
content of advanced oxidation protein products (AOPP), protein carbonyl groups, as well as
thiol groups. Moreover, the levels of glycoalbumin and AGEs were determined by using an
enzyme-linked immunosorbent assay. Based on the kinetic results, the optimal incubation
time for studies of the modification of the glycoxidation rate by additives was chosen, and
the effects of 25 compounds of natural origin on the glycoxidation of BSA induced by
various sugars were examined. The same compounds were found to have different effects
on glycoxidation induced by various sugars, which suggests caution in extrapolation from
experiments based on one sugar to other sugars. From among the compounds tested, the
most effective inhibitors of glycoxidation were: polyphenols, pyridoxine and 1-cyano-4-
hydroxycinnamic acid. | pl_PL |
dc.description.sponsorship | The study has been supported by Grant 2011/01/M/NZ3/02065 from the Polish National Science Center
and performed within the COST (European Cooperation in Science and Technology) action CM1001. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | MDPI | pl_PL |
dc.relation.ispartofseries | Molecules;11 | |
dc.rights | Uznanie autorstwa 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/pl/ | * |
dc.subject | glycation | pl_PL |
dc.subject | kinetics | pl_PL |
dc.subject | glucose | pl_PL |
dc.subject | fructose | pl_PL |
dc.subject | ribose | pl_PL |
dc.subject | polyphenols | pl_PL |
dc.subject | flavonoids | pl_PL |
dc.subject | AGEs | pl_PL |
dc.title | Kinetics of Glycoxidation of Bovine Serum Albumin by Glucose, Fructose and Ribose and Its Prevention by Food Components | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 18828-18849 | pl_PL |
dc.contributor.authorAffiliation | University of Rzeszów, Department of Biochemistry and Cell Biology | pl_PL |
dc.contributor.authorAffiliation | University of Łódź, Department of Molecular Biophysics | pl_PL |
dc.references | Seidler, N.W. Basic biology of GAPDH. Adv. Exp. Med. Biol. 2013, 985, 1–36 | pl_PL |
dc.references | Rondeau, P.; Bourdon, E. The glycation of albumin: Structural and functional impacts. Biochimie 2011, 93, 645–658 | pl_PL |
dc.references | Kalapos, M.P. Methylglyoxal in living organisms. Chemistry; biochemistry; toxicology and biological implications. Toxicol. Lett. 1999, 110, 145–175 | pl_PL |
dc.references | McLellan, A.C.; Thornalley, P.J.; Benn, J.; Sonksen, P.H. Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complication. Clin. Sci. 1994, 87, 21–29 | pl_PL |
dc.references | Thornalley, P.J. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems—Role in ageing and disease. Drug Metabol. Drug Interact. 2008, 23, 125–150 | pl_PL |
dc.references | Turk, Z. Glycotoxines; carbonyl stress and relevance to diabetes and its complications. Physiol. Res. 2010, 59, 147–156 | pl_PL |
dc.references | Tarwadi, K.V.; Agte, V.V. Effect of micronutrients on methylglyoxal-mediated in vitro glycation of albumin. Biol. Trace Elem. Res. 2011, 143, 717–725 | pl_PL |
dc.references | Lv, L.; Shao, X.; Chen, H.; Ho, C.T.; Sang, S. Genistein inhibits advanced glycation end product formation by trapping methylglyoxal. Chem. Res. Toxicol. 2011, 24, 579–586 | pl_PL |
dc.references | Ihnat, M.A.; Thorpe, J.E.; Ceriello, A. Hypothesis: The “metabolic memory”; the new challenge of diabetes. Diabet Med. 2007, 24, 582–586 | pl_PL |
dc.references | Bento, C.F.; Marques, F.; Fernandes, R.; Pereira, P. Methylglyoxal alters the function and stability of critical components of the protein quality control. PLoS One 2010, 5, e13007 | pl_PL |
dc.references | Vistoli, G.; de Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic. Res. 2013, 47 (Suppl. 1), 3–27 | pl_PL |
dc.references | Muthenna, P.; Akileshwari, C.; Saraswat, M.; Bhanuprakash Reddy, G. Inhibition of advanced glycation end-product formation on eye lens protein by rutin. Br. J. Nutr. 2012, 107, 941–949 | pl_PL |
dc.references | Aldini, G.; Vistoli, G.; Stefek, M.; Chondrogianni, N.; Grune, T.; Sereikaite, J.; Sadowska-Bartosz, I.; Bartosz, G. Molecular strategies to prevent; inhibit; and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic. Res. 2013, 47 (Suppl. 1), 93–137 | pl_PL |
dc.references | Fujiwara, Y.; Kiyota, N.; Tsurushima, K.; Yoshitomi, M.; Mera, K.; Sakashita, N.; Takeya, M.; Ikeda, T.; Araki, T.; Nohara, T.; et al. Natural compounds containing a catechol group enhance the formation of N′-(carboxymethyl)lysine of the Maillard reaction. Free Radic. Biol. Med. 2011, 50, 883–891 | pl_PL |
dc.references | Sadowska-Bartosz, I.; Adamczyk-Sowa, M.; Galiniak, S.; Mucha, S.; Pierzchala, K.; Bartosz, G. Oxidative modification of serum proteins in multiple sclerosis. Neurochem. Int. 2013, 6, 507–516 | pl_PL |
dc.references | Kaufmann, E.; Boehm, B.O.; Süssmuth, S.D.; Kientsch-Engel, R.; Sperfeld, A.; Ludolph, A.C.; Tumani, H. The advanced glycation end-product N epsilon-(carboxymethyl)lysine level is elevated in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Neurosci. Lett. 2004, 371, 226–229 | pl_PL |
dc.references | Anguizola, J.; Matsuda, R.; Barnaby, O.S.; Hoy, K.S.; Wa, C.; DeBolt, E.; Koke, M.; Hage, D.S. Review: Glycation of human serum albumin. Clin. Chim. Acta 2013, 425, 64–76 | pl_PL |
dc.references | Bourdon, N.; Loreau, N.; Blache, D. Glucose and free radicals impair the antioxidant properties of serum albumin. FASEB J. 1999, 13, 233–244 | pl_PL |
dc.references | Ramkissoon, J.S.; Mahomoodally, M.F.; Ahmed, N.; Subratty, A.H. Antioxidant and anti-glycationactivities correlates with phenolic composition of tropical medicinal herbs. Asian Pac. J. Trop. Med. 2013, 6, 561–569 | pl_PL |
dc.references | Rezg, R.; El-Fazaa, S.; Gharbi, N.; Mornagui, B. Bisphenol A and human chronic diseases: Current evidences; possible mechanisms; and future perspectives. Environ. Int. 2013, 64C, 83–90 | pl_PL |
dc.references | Griffiths, H.R.; Lunec, J.; Blake, D.R. Oxygen radical induced fluorescence in proteins; identification of the fluorescent tryptophan metabolite; N-formyl kynurenine; as a biological index of radical damage. Amino Acids 1992, 3, 183–194 | pl_PL |
dc.references | Royer, C.A. Probing protein folding and conformational transitions with fluorescence. Chem. Rev. 2006, 106, 1769–1784 | pl_PL |
dc.references | Le Guen, C.A.; Bain, S.; Barnett, A.H.; Lunec, J. Captopril inhibits the fluorescence development associated with glycation of proteins. Agents Actions 1992, 36, 264–270 | pl_PL |
dc.references | Jakus, V.; Hrnciarová, M.; Cársky, J.; Krahulec, B.; Rietbrock, N. Inhibition of nonenzymatic protein glycation and lipid peroxidation by drugs with antioxidant activity. Life Sci. 1999, 65, 1991–1993 | pl_PL |
dc.references | Fan, X.; Xiaoqin, L.; Potts, B.; Strauch, C.M.; Nemet, I.; Monnier, V.M. Topical application of l-arginine blocks advanced glycation by ascorbic acid in the lens of hSVCT2 transgenic mice. Mol. Vis. 2011, 17, 2221–2227 | pl_PL |
dc.references | Tupe, R.; Agte, V.V. Interaction of zinc; ascorbic acid; and folic acid in glycation with albumin as protein model. Biol. Trace Elem. Res. 2010, 138, 346–357 | pl_PL |
dc.references | Krone, C.A.; Ely, J.T. Ascorbic acid; glycation; glycohemoglobin and aging. Med. Hypotheses 2004, 62, 275–279 | pl_PL |
dc.references | Vallianou, N.; Evangelopoulos, A.; Koutalas, P. Alpha-lipoic acid and diabetic neuropathy. Rev. Diabet. Stud. 2009, 6, 230–236 | pl_PL |
dc.references | Das, UN. Pyruvate is an endogenous anti-inflammatory and anti-oxidant molecule. Med. Sci. Monit. 2006, 12, RA79–RA84 | pl_PL |
dc.references | Zhao, W.; Devamanoharan, P.S.; Varma, S.D. Fructose induced deactivation of antioxidant enzymes: Preventive effect of pyruvate. Free Radic. Res. 2000, 33, 23–30 | pl_PL |
dc.references | Hegde, K.R.; Varma, S.D. Prevention of cataract by pyruvate in experimentally diabetic mice. Mol. Cell. Biochem. 2005, 269, 115–120 | pl_PL |
dc.references | Akberova, S.I.; Musaev, P.I.; Magomedov, N.M.; Babaev, K.F.; Gakhramanov, K.M.; Stroeva, O.G. Para-aminobenzoic acid as an antioxidant. Dokl. Akad. Nauk 1998, 361, 419–421 | pl_PL |
dc.references | Greenstock, C.L.; Miller, R.W. The oxidation of tiron by superoxide anion. Kinetics of the reaction in aqueous solution in chloroplasts. Biochim. Biophys. Acta 1975, 396, 11–16 | pl_PL |
dc.references | Krishna, C.M.; Liebmann, J.E.; Kaufman, D.; DeGraff, W.; Hahn, S.M.; McMurry, T.; Mitchell, J.B.; Russo, A. The catecholic metal sequestering agent 1;2-dihydroxybenzene-3;5-disulfonate confers protection against oxidative cell damage. Arch. Biochem. Biophys. 1992, 294, 98–106 | pl_PL |
dc.references | Soule, B.P.; Hyodo, F.; Matsumoto, K.; Simone, N.L.; Cook, J.A.; Krishna, M.C.; Mitchell, J.B. The chemistry and biology of nitroxide compounds. Free Radic. Biol. Med. 2007, 42, 1632–1650 | pl_PL |
dc.references | Bournival, J.; Francoeur, M.A.; Renaud, J.; Martinoli, M.G. Quercetin and sesamin protect neuronal PC12 cells from high-glucose-induced oxidation; nitrosative stress; and apoptosis. Rejuvenation Res. 2012, 15, 322–333 | pl_PL |
dc.references | Xie, Y.; Chen, X. Structures required of polyphenols for inhibiting advanced glycation end products formation. Curr. Drug Metab. 2013, 14, 414–431 | pl_PL |
dc.references | Obrenovich, M.E.; Nair, N.G.; Beyaz, A.; Aliev, G.; Reddy, V.P. The role of polyphenolic antioxidants in health; disease; and aging. Rejuvenation Res. 2010, 13, 631–643 | pl_PL |
dc.references | Razzaghi-Asl, N.; Garrido, J.; Khazraei, H.; Borges, F.; Firuzi, O. Antioxidant properties of hydroxycinnamic acids: A review of structure-activity relationships. Curr. Med. Chem. 2013, 20, 4436–4450 | pl_PL |
dc.references | Jang, D.S.; Yoo, N.H.; Kim, N.H.; Lee, Y.M.; Kim, C.S.; Kim, J.; Kim, J.H.; Kim, J.S. 3;5-Di-O-caffeoyl-epi-quinic acid from the leaves and stems of Erigeron annuus inhibits protein glycation; aldose reductase; and cataractogenesis. Biol. Pharm. Bull. 2010, 33, 329–333 | pl_PL |
dc.references | Ishibashi, Y.; Matsui, T.; Takeuchi, M.; Yamagishi, S. Metformin inhibits advanced glycation end products (AGEs)-induced renal tubular cell injury by suppressing reactive oxygen species generation via reducing receptor for AGEs (RAGE) expression. Horm. Metab. Res. 2012, 44, 891–895 | pl_PL |
dc.references | Ahmad, S.; Shahab, U.; Baig, M.H.; Khan, M.S.; Khan, M.S.; Srivastava, A.K.; Saeed, M.; Moinuddin. Inhibitory effect of metformin and pyridoxamine in the formation of early; intermediate and advanced glycation end-products. PLoS One 2013, 8, e72128 | pl_PL |
dc.references | Diamanti-Kandarakis, E.; Alexandraki, K.; Piper, C.; Aessopos, A.; Paterakis, T.; Katsikis, I.; Panidis, D. Effect of metformin administration on plasma advanced glycation end product levels in women with polycystic ovary syndrome. Metabolism 2007, 56, 29–134 | pl_PL |
dc.references | Ganapathy-Kanniappan, S.; Kunjithapatham, R.; Geschwind, J.F. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: Specific molecular targeting. Anticancer Res. 2013, 33, 13–20 | pl_PL |
dc.references | Briski, K.P.; Patil, G.D. Induction of Fos immunoreactivity labeling in rat forebrain metabolic loci by caudal fourth ventricular infusion of the monocarboxylate transporter inhibitor; alpha-cyano-4-hydroxycinnamic acid. Neuroendocrinology 2005, 82, 49–57 | pl_PL |
dc.references | Thornalley, P.J.; Yurek-George, A.; Argirov, O.K. Kinetics and mechanism of the reaction of aminoguanidine with the alpha-oxoaldehydes glyoxal; methylglyoxal; and 3-deoxyglucosone under physiological conditions. Biochem. Pharmacol. 2000, 60, 55–65 | pl_PL |
dc.references | Baynes, J.W.; Murray, D.B. The metal chelators; trientine and citrate; inhibit the development of cardiac pathology in the Zucker diabetic rat. Exp. Diabetes Res. 2009, 2009, 696378 | pl_PL |
dc.references | Mera, K.; Takeo, K.; Izumi, M.; Mruyama, T.; Nagai, R.; Otagiri, M. Effect of reactive-aldehydeson the modification and dysfunction of human serum albumin. J. Pharm. Sci. 2010, 99, 1614–1625 | pl_PL |
dc.references | Grimm, S.; Horlacher, M.; Catalgol, B.; Hoehn, A.; Reinheckel, T.; Grune, T. Cathepsins D and L reduce the toxicity of advanced glycation end products. Free Radic. Biol. Med. 2012, 52, 1011–1023 | pl_PL |
dc.references | Seneviratne, C.; Dombi, G.W.; Liu, W.; Dain, J.A. The in vitro glycation of human serum albumin in the presence of Zn(II). J. Inorg. Biochem. 2011, 105, 1548–1554 | pl_PL |
dc.references | Kang, Y.; Edwards, L.G.; Thornalley, P.J. Effect of methylglyoxal on human leukaemia 60 cell growth: modification of DNA G1 growth arrest and induction of apoptosis. Leuk. Res. 1996, 20, 397–405 | pl_PL |
dc.references | Meeprom, A.; Sompong, W.; Chan, C.B.; Adisakwattana, S. Isoferulic acid; a new anti-glycation agent; inhibits fructose- and glucose-mediated protein glycation in vitro. Molecules 2013, 18, 6439–6454 | pl_PL |
dc.references | Witko-Sarsat, V.; Friedlander, M.; Capeillere-Blandin, C.; Nguyen-Khoa, T.; Nguyen, A.T.; Zingraff, J.; Jungers, P.; Descamps-Latscha, B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996, 49, 1304–1313 | pl_PL |
dc.contributor.authorEmail | isadowska@poczta.fm | pl_PL |
dc.identifier.doi | 10.3390/molecules191118828 | |
dc.relation.volume | 19 | pl_PL |