dc.contributor.author | Bjerke, Glen A. | |
dc.contributor.author | Pietrzak, Karolina | |
dc.contributor.author | Melhuish, Tiffany A. | |
dc.contributor.author | Frierson Jr., Henry F. | |
dc.contributor.author | Paschal, Bryce M. | |
dc.contributor.author | Wotton, David | |
dc.date.accessioned | 2016-04-01T10:31:26Z | |
dc.date.available | 2016-04-01T10:31:26Z | |
dc.date.issued | 2014 | |
dc.identifier.uri | http://hdl.handle.net/11089/17653 | |
dc.description.abstract | Recent work with mouse models of prostate cancer (CaP) has shown that inactivation of TGFβ signaling in prostate epithelium can cooperate with deletion of the Pten tumor suppressor to drive locally aggressive cancer and metastatic disease. Here, we show that inactivating the TGFβ pathway by deleting the gene encoding the TGFβ type II receptor (Tgfbr2) in combination with a deletion of the Apc tumor suppressor gene specifically in mouse prostate epithelium, results in the rapid onset of invasive CaP. Micro-metastases were observed in the lymph nodes and lungs of a proportion of the double mutant mice, whereas no metastases were observed in Apc single mutant mice. Prostate-specific Apc;Tgfbr2 mutants had a lower frequency of metastasis and survived significantly longer than Pten;Tgfbr2 double mutants. However, all Apc;Tgfbr2 mutants developed invasive cancer by 30 weeks of age, whereas invasive cancer was rarely observed in Apc single mutant animals, even by one year of age. Further comparison of the Pten and Apc models of CaP revealed additional differences, including adenosquamous carcinoma in the Apc;Tgfbr2 mutants that was not seen in the Pten model, and a lack of robust induction of the TGFβ pathway in Apc null prostate. In addition to causing high-grade prostate intra-epithelial neoplasia (HGPIN), deletion of either Pten or Apc induced senescence in affected prostate ducts, and this restraint was overcome by loss of Tgfbr2. In summary, this work demonstrates that TGFβ signaling restrains the progression of CaP induced by different tumor suppressor mutations, suggesting that TGFβ signaling exerts a general tumor suppressive effect in prostate. | pl_PL |
dc.description.sponsorship | This work was supported by a Program Project Grant from the National Cancer Institute (2P01CA104106 to B. Paschal and D. Wotton), and by a pilot grant from the UVA Cancer Center (funded from the CCSG P30 CA44579, the James and Rebecca CraigFoundation, and UVA Women's Oncology fund) to D. Wotton. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank Sharon Birdsall for technical assistance, Anindya Dutta and Dan
Gioeli for helpful discussions, and Chun-Song Yang for advice and
reagents | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | PLOS | pl_PL |
dc.relation.ispartofseries | PLOSone;3 | |
dc.rights | Uznanie autorstwa 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/pl/ | * |
dc.title | Prostate Cancer Induced by Loss of Apc Is Restrained by TGFβ Signaling | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | e92800 | pl_PL |
dc.contributor.authorAffiliation | University of Virginia, Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling | pl_PL |
dc.contributor.authorAffiliation | University of Lodz, Department of Cytobiochemistry | pl_PL |
dc.contributor.authorAffiliation | University of Virginia, Department of Pathology | pl_PL |
dc.identifier.eissn | 1932-6203 | |
dc.references | Shen MM, Abate-Shen C (2010) Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24: 1967–2000. doi: 10.1101/gad.1965810 | pl_PL |
dc.references | Cairns P, Okami K, Halachmi S, Halachmi N, Esteller M, et al. (1997) Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 57: 4997–5000 | pl_PL |
dc.references | Dahia PL (2000) PTEN, a unique tumor suppressor gene. Endocr Relat Cancer 7: 115–129. doi: 10.1677/erc.0.0070115 | pl_PL |
dc.references | Suzuki H, Freije D, Nusskern DR, Okami K, Cairns P, et al. (1998) Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res 58: 204–209 | pl_PL |
dc.references | Wang SI, Parsons R, Ittmann M (1998) Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. Clin Cancer Res 4: 811–815 | pl_PL |
dc.references | Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273: 13375–13378. doi: 10.1074/jbc.273.22.13375 | pl_PL |
dc.references | Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, et al. (1998) The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci U S A 95: 13513–13518. doi: 10.1073/pnas.95.23.13513 | pl_PL |
dc.references | Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, et al. (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95: 29–39. doi: 10.1016/s0092-8674(00)81780-8 | pl_PL |
dc.references | Sun H, Lesche R, Li DM, Liliental J, Zhang H, et al. (1999) PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci U S A 96: 6199–6204. doi: 10.1073/pnas.96.11.6199 | pl_PL |
dc.references | Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL (1998) The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci U S A 95: 15587–15591. doi: 10.1073/pnas.95.26.15587 | pl_PL |
dc.references | Di Cristofano A, Pandolfi PP (2000) The multiple roles of PTEN in tumor suppression. Cell 100: 387–390. doi: 10.1016/s0092-8674(00)80674-1 | pl_PL |
dc.references | Yamada KM, Araki M (2001) Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 114: 2375–2382 | pl_PL |
dc.references | Heldin C-H, Miyazono K, ten Dijke P (1997) TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390: 465–471. doi: 10.1038/37284 | pl_PL |
dc.references | Massagué J (1998) TGFβ signal transduction. Annu Rev Biochem 67: 753–791. doi: 10.1146/annurev.biochem.67.1.753 | pl_PL |
dc.references | Zhang Y, Derynck R (1999) Regulation of Smad signaling by protein associations and signaling crosstalk. Trends in Cell BIology 9: 274–279. doi: 10.1016/s0962-8924(99)01579-2 | pl_PL |
dc.references | Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19: 2783–2810. doi: 10.1101/gad.1350705 | pl_PL |
dc.references | Ikushima H, Miyazono K (2010) TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10: 415–424. doi: 10.1038/nrc2853 | pl_PL |
dc.references | Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103: 295–309. doi: 10.1016/s0092-8674(00)00121-5 | pl_PL |
dc.references | Aitchison AA, Veerakumarasivam A, Vias M, Kumar R, Hamdy FC, et al. (2008) Promoter methylation correlates with reduced Smad4 expression in advanced prostate cancer. Prostate 68: 661–674. doi: 10.1002/pros.20730 | pl_PL |
dc.references | Levy L, Hill CS (2006) Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev 17: 41–58. doi: 10.1016/j.cytogfr.2005.09.009 | pl_PL |
dc.references | Zhao H, Shiina H, Greene KL, Li LC, Tanaka Y, et al. (2005) CpG methylation at promoter site -140 inactivates TGFbeta2 receptor gene in prostate cancer. Cancer 104: 44–52. doi: 10.1002/cncr.21135 | pl_PL |
dc.references | Guo Y, Jacobs SC, Kyprianou N (1997) Down-regulation of protein and mRNA expression for transforming growth factor-beta (TGF-beta1) type I and type II receptors in human prostate cancer. Int J Cancer 71: 573–579. doi: 10.1002/(sici)1097-0215(19970516)71:4<573::aid-ijc11>3.3.co;2-1 | pl_PL |
dc.references | Kim IY, Ahn HJ, Zelner DJ, Shaw JW, Lang S, et al. (1996) Loss of expression of transforming growth factor beta type I and type II receptors correlates with tumor grade in human prostate cancer tissues. Clin Cancer Res 2: 1255–1261 | pl_PL |
dc.references | Williams RH, Stapleton AM, Yang G, Truong LD, Rogers E, et al. (1996) Reduced levels of transforming growth factor beta receptor type II in human prostate cancer: an immunohistochemical study. Clin Cancer Res 2: 635–640 | pl_PL |
dc.references | Fearon ER (2011) Molecular genetics of colorectal cancer. Annu Rev Pathol 6: 479–507. doi: 10.1146/annurev-pathol-011110-130235 | pl_PL |
dc.references | Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127: 469–480. doi: 10.1016/j.cell.2006.10.018 | pl_PL |
dc.references | MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17: 9–26. doi: 10.1016/j.devcel.2009.06.016 | pl_PL |
dc.references | Eastman Q, Grosschedl R (1999) Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr Opin Cell Biol 11: 233–240. doi: 10.1016/s0955-0674(99)80031-3 | pl_PL |
dc.references | Kypta RM, Waxman J (2012) Wnt/beta-catenin signalling in prostate cancer. Nat Rev Urol | pl_PL |
dc.references | Chen Y, Li J, Yu X, Li S, Zhang X, et al. (2013) APC gene hypermethylation and prostate cancer: a systematic review and meta-analysis. Eur J Hum Genet 21: 929–935. doi: 10.1038/ejhg.2012.281 | pl_PL |
dc.references | Jeronimo C, Bastian PJ, Bjartell A, Carbone GM, Catto JW, et al. (2011) Epigenetics in prostate cancer: biologic and clinical relevance. Eur Urol 60: 753–766. doi: 10.1016/j.eururo.2011.06.035 | pl_PL |
dc.references | Voeller HJ, Truica CI, Gelmann EP (1998) Beta-catenin mutations in human prostate cancer. Cancer Res 58: 2520–2523 | pl_PL |
dc.references | Bjerke GA, Yang CS, Frierson HF, Paschal BM, Wotton D (2013) Activation of Akt signaling in prostate induces a TGFbeta-mediated restraint on cancer progression and metastasis. Oncogene | pl_PL |
dc.references | Ding Z, Wu CJ, Chu GC, Xiao Y, Ho D, et al. (2011) SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 470: 269–273. doi: 10.1038/nature09677 | pl_PL |
dc.references | Pearson HB, Phesse TJ, Clarke AR (2009) K-ras and Wnt signaling synergize to accelerate prostate tumorigenesis in the mouse. Cancer Res 69: 94–101. doi: 10.1158/0008-5472.can-08-2895 | pl_PL |
dc.references | Yu X, Wang Y, Jiang M, Bierie B, Roy-Burman P, et al. (2009) Activation of beta-Catenin in mouse prostate causes HGPIN and continuous prostate growth after castration. Prostate 69: 249–262. doi: 10.1002/pros.20877 | pl_PL |
dc.references | Bruxvoort KJ, Charbonneau HM, Giambernardi TA, Goolsby JC, Qian CN, et al. (2007) Inactivation of Apc in the mouse prostate causes prostate carcinoma. Cancer Res 67: 2490–2496. doi: 10.1158/0008-5472.can-06-3028 | pl_PL |
dc.references | Wu X, Wu J, Huang J, Powell WC, Zhang J, et al. (2001) Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech Dev 101: 61–69. doi: 10.1016/s0925-4773(00)00551-7 | pl_PL |
dc.references | Tu WH, Thomas TZ, Masumori N, Bhowmick NA, Gorska AE, et al. (2003) The loss of TGF-beta signaling promotes prostate cancer metastasis. Neoplasia 5: 267–277. doi: 10.1016/s1476-5586(03)80058-1 | pl_PL |
dc.references | Francis JC, Thomsen MK, Taketo MM, Swain A (2013) beta-catenin is required for prostate development and cooperates with Pten loss to drive invasive carcinoma. PLoS Genet 9: e1003180. doi: 10.1371/journal.pgen.1003180 | pl_PL |
dc.references | Ittmann M, Huang J, Radaelli E, Martin P, Signoretti S, et al. (2013) Animal models of human prostate cancer: the consensus report of the New York meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee. Cancer Res 73: 2718–2736. doi: 10.1158/0008-5472.can-12-4213 | pl_PL |
dc.references | Pienta KJ, Abate-Shen C, Agus DB, Attar RM, Chung LW, et al. (2008) The current state of preclinical prostate cancer animal models. Prostate 68: 629–639. doi: 10.1002/pros.20726 | pl_PL |
dc.references | Roy-Burman P, Wu H, Powell WC, Hagenkord J, Cohen MB (2004) Genetically defined mouse models that mimic natural aspects of human prostate cancer development. Endocr Relat Cancer 11: 225–254. doi: 10.1677/erc.0.0110225 | pl_PL |
dc.references | Kim J, Roh M, Doubinskaia I, Algarroba GN, Eltoum IE, et al. (2012) A mouse model of heterogeneous, c-MYC-initiated prostate cancer with loss of Pten and p53. Oncogene 31: 322–332. doi: 10.1038/onc.2011.236 | pl_PL |
dc.references | Fine SW (2012) Variants and unusual patterns of prostate cancer: clinicopathologic and differential diagnostic considerations. Adv Anat Pathol 19: 204–216. doi: 10.1097/pap.0b013e31825c6b92 | pl_PL |
dc.references | Massague J (2008) TGFbeta in Cancer. Cell 134: 215–230. doi: 10.1016/j.cell.2008.07.001 | pl_PL |
dc.references | Cheung KJ, Gabrielson E, Werb Z, Ewald AJ (2013) Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155: 1639–1651. doi: 10.1016/j.cell.2013.11.029 | pl_PL |
dc.references | Friedl P, Locker J, Sahai E, Segall JE (2012) Classifying collective cancer cell invasion. Nat Cell Biol 14: 777–783. doi: 10.1038/ncb2548 | pl_PL |
dc.references | Wang H, Xu Y, Fang Z, Chen S, Balk SP, et al. (2012) Doxycycline regulated induction of AKT in murine prostate drives proliferation independently of p27 cyclin dependent kinase inhibitor downregulation. PLoS One 7: e41330. doi: 10.1371/journal.pone.0041330 | pl_PL |
dc.references | Jakel H, Peschel I, Kunze C, Weinl C, Hengst L (2012) Regulation of p27 (Kip1) by mitogen-induced tyrosine phosphorylation. Cell Cycle 11: 1910–1917. doi: 10.4161/cc.19957 | pl_PL |
dc.references | Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192: 547–556. doi: 10.1083/jcb.201009094 | pl_PL |
dc.references | Majumder PK, Grisanzio C, O'Connell F, Barry M, Brito JM, et al. (2008) A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression. Cancer Cell 14: 146–155. doi: 10.1016/j.ccr.2008.06.002 | pl_PL |
dc.references | Chytil A, Magnuson MA, Wright CV, Moses HL (2002) Conditional inactivation of the TGF-beta type II receptor using Cre:Lox. Genesis 32: 73–75. doi: 10.1002/gene.10046 | pl_PL |
dc.references | Kuraguchi M, Wang XP, Bronson RT, Rothenberg R, Ohene-Baah NY, et al. (2006) Adenomatous polyposis coli (APC) is required for normal development of skin and thymus. PLoS Genet 2: e146. doi: 10.1371/journal.pgen.0020146.eor | pl_PL |
dc.references | Suzuki A, Yamaguchi MT, Ohteki T, Sasaki T, Kaisho T, et al. (2001) T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 14: 523–534. doi: 10.1016/s1074-7613(01)00134-0 | pl_PL |
dc.references | Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, et al.. (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29: 52, 54 | pl_PL |
dc.references | Bartholin L, Melhuish TA, Powers SE, Goddard-Leon S, Treilleux I, et al. (2008) Maternal Tgif is required for vascularization of the embryonic placenta. Dev Biol 319: 285–297. doi: 10.1016/j.ydbio.2008.04.027 | pl_PL |
dc.references | Galgano MT, Conaway M, Spencer AM, Paschal BM, Frierson HF Jr (2009) PRK1 distribution in normal tissues and carcinomas: overexpression and activation in ovarian serous carcinoma. Hum Pathol 40: 1434–1440 | pl_PL |
dc.references | Powers SE, Taniguchi K, Yen W, Melhuish TA, Shen J, et al. (2010) Tgif1 and Tgif2 regulate Nodal signaling and are required for gastrulation. Development 137: 249–259. doi: 10.1242/dev.040782 | pl_PL |
dc.references | Taniguchi K, Anderson AE, Sutherland AE, Wotton D (2012) Loss of Tgif function causes holoprosencephaly by disrupting the Shh signaling pathway. PLoS Genet 8: e1002524. doi: 10.1371/journal.pgen.1002524 | pl_PL |
dc.contributor.authorEmail | dw2p@virginia.edu | pl_PL |
dc.identifier.doi | 10.1371/journal.pone.0092800 | |
dc.relation.volume | 9 | pl_PL |