Show simple item record

dc.contributor.authorBjerke, Glen A.
dc.contributor.authorPietrzak, Karolina
dc.contributor.authorMelhuish, Tiffany A.
dc.contributor.authorFrierson Jr., Henry F.
dc.contributor.authorPaschal, Bryce M.
dc.contributor.authorWotton, David
dc.date.accessioned2016-04-01T10:31:26Z
dc.date.available2016-04-01T10:31:26Z
dc.date.issued2014
dc.identifier.urihttp://hdl.handle.net/11089/17653
dc.description.abstractRecent work with mouse models of prostate cancer (CaP) has shown that inactivation of TGFβ signaling in prostate epithelium can cooperate with deletion of the Pten tumor suppressor to drive locally aggressive cancer and metastatic disease. Here, we show that inactivating the TGFβ pathway by deleting the gene encoding the TGFβ type II receptor (Tgfbr2) in combination with a deletion of the Apc tumor suppressor gene specifically in mouse prostate epithelium, results in the rapid onset of invasive CaP. Micro-metastases were observed in the lymph nodes and lungs of a proportion of the double mutant mice, whereas no metastases were observed in Apc single mutant mice. Prostate-specific Apc;Tgfbr2 mutants had a lower frequency of metastasis and survived significantly longer than Pten;Tgfbr2 double mutants. However, all Apc;Tgfbr2 mutants developed invasive cancer by 30 weeks of age, whereas invasive cancer was rarely observed in Apc single mutant animals, even by one year of age. Further comparison of the Pten and Apc models of CaP revealed additional differences, including adenosquamous carcinoma in the Apc;Tgfbr2 mutants that was not seen in the Pten model, and a lack of robust induction of the TGFβ pathway in Apc null prostate. In addition to causing high-grade prostate intra-epithelial neoplasia (HGPIN), deletion of either Pten or Apc induced senescence in affected prostate ducts, and this restraint was overcome by loss of Tgfbr2. In summary, this work demonstrates that TGFβ signaling restrains the progression of CaP induced by different tumor suppressor mutations, suggesting that TGFβ signaling exerts a general tumor suppressive effect in prostate.pl_PL
dc.description.sponsorshipThis work was supported by a Program Project Grant from the National Cancer Institute (2P01CA104106 to B. Paschal and D. Wotton), and by a pilot grant from the UVA Cancer Center (funded from the CCSG P30 CA44579, the James and Rebecca CraigFoundation, and UVA Women's Oncology fund) to D. Wotton. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank Sharon Birdsall for technical assistance, Anindya Dutta and Dan Gioeli for helpful discussions, and Chun-Song Yang for advice and reagentspl_PL
dc.language.isoenpl_PL
dc.publisherPLOSpl_PL
dc.relation.ispartofseriesPLOSone;3
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.titleProstate Cancer Induced by Loss of Apc Is Restrained by TGFβ Signalingpl_PL
dc.typeArticlepl_PL
dc.page.numbere92800pl_PL
dc.contributor.authorAffiliationUniversity of Virginia, Department of Biochemistry and Molecular Genetics, and Center for Cell Signalingpl_PL
dc.contributor.authorAffiliationUniversity of Lodz, Department of Cytobiochemistrypl_PL
dc.contributor.authorAffiliationUniversity of Virginia, Department of Pathologypl_PL
dc.identifier.eissn1932-6203
dc.referencesShen MM, Abate-Shen C (2010) Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24: 1967–2000. doi: 10.1101/gad.1965810pl_PL
dc.referencesCairns P, Okami K, Halachmi S, Halachmi N, Esteller M, et al. (1997) Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 57: 4997–5000pl_PL
dc.referencesDahia PL (2000) PTEN, a unique tumor suppressor gene. Endocr Relat Cancer 7: 115–129. doi: 10.1677/erc.0.0070115pl_PL
dc.referencesSuzuki H, Freije D, Nusskern DR, Okami K, Cairns P, et al. (1998) Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res 58: 204–209pl_PL
dc.referencesWang SI, Parsons R, Ittmann M (1998) Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. Clin Cancer Res 4: 811–815pl_PL
dc.referencesMaehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273: 13375–13378. doi: 10.1074/jbc.273.22.13375pl_PL
dc.referencesMyers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, et al. (1998) The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci U S A 95: 13513–13518. doi: 10.1073/pnas.95.23.13513pl_PL
dc.referencesStambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, et al. (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95: 29–39. doi: 10.1016/s0092-8674(00)81780-8pl_PL
dc.referencesSun H, Lesche R, Li DM, Liliental J, Zhang H, et al. (1999) PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci U S A 96: 6199–6204. doi: 10.1073/pnas.96.11.6199pl_PL
dc.referencesWu X, Senechal K, Neshat MS, Whang YE, Sawyers CL (1998) The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci U S A 95: 15587–15591. doi: 10.1073/pnas.95.26.15587pl_PL
dc.referencesDi Cristofano A, Pandolfi PP (2000) The multiple roles of PTEN in tumor suppression. Cell 100: 387–390. doi: 10.1016/s0092-8674(00)80674-1pl_PL
dc.referencesYamada KM, Araki M (2001) Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 114: 2375–2382pl_PL
dc.referencesHeldin C-H, Miyazono K, ten Dijke P (1997) TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390: 465–471. doi: 10.1038/37284pl_PL
dc.referencesMassagué J (1998) TGFβ signal transduction. Annu Rev Biochem 67: 753–791. doi: 10.1146/annurev.biochem.67.1.753pl_PL
dc.referencesZhang Y, Derynck R (1999) Regulation of Smad signaling by protein associations and signaling crosstalk. Trends in Cell BIology 9: 274–279. doi: 10.1016/s0962-8924(99)01579-2pl_PL
dc.referencesMassague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19: 2783–2810. doi: 10.1101/gad.1350705pl_PL
dc.referencesIkushima H, Miyazono K (2010) TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10: 415–424. doi: 10.1038/nrc2853pl_PL
dc.referencesMassague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103: 295–309. doi: 10.1016/s0092-8674(00)00121-5pl_PL
dc.referencesAitchison AA, Veerakumarasivam A, Vias M, Kumar R, Hamdy FC, et al. (2008) Promoter methylation correlates with reduced Smad4 expression in advanced prostate cancer. Prostate 68: 661–674. doi: 10.1002/pros.20730pl_PL
dc.referencesLevy L, Hill CS (2006) Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev 17: 41–58. doi: 10.1016/j.cytogfr.2005.09.009pl_PL
dc.referencesZhao H, Shiina H, Greene KL, Li LC, Tanaka Y, et al. (2005) CpG methylation at promoter site -140 inactivates TGFbeta2 receptor gene in prostate cancer. Cancer 104: 44–52. doi: 10.1002/cncr.21135pl_PL
dc.referencesGuo Y, Jacobs SC, Kyprianou N (1997) Down-regulation of protein and mRNA expression for transforming growth factor-beta (TGF-beta1) type I and type II receptors in human prostate cancer. Int J Cancer 71: 573–579. doi: 10.1002/(sici)1097-0215(19970516)71:4<573::aid-ijc11>3.3.co;2-1pl_PL
dc.referencesKim IY, Ahn HJ, Zelner DJ, Shaw JW, Lang S, et al. (1996) Loss of expression of transforming growth factor beta type I and type II receptors correlates with tumor grade in human prostate cancer tissues. Clin Cancer Res 2: 1255–1261pl_PL
dc.referencesWilliams RH, Stapleton AM, Yang G, Truong LD, Rogers E, et al. (1996) Reduced levels of transforming growth factor beta receptor type II in human prostate cancer: an immunohistochemical study. Clin Cancer Res 2: 635–640pl_PL
dc.referencesFearon ER (2011) Molecular genetics of colorectal cancer. Annu Rev Pathol 6: 479–507. doi: 10.1146/annurev-pathol-011110-130235pl_PL
dc.referencesClevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127: 469–480. doi: 10.1016/j.cell.2006.10.018pl_PL
dc.referencesMacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17: 9–26. doi: 10.1016/j.devcel.2009.06.016pl_PL
dc.referencesEastman Q, Grosschedl R (1999) Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr Opin Cell Biol 11: 233–240. doi: 10.1016/s0955-0674(99)80031-3pl_PL
dc.referencesKypta RM, Waxman J (2012) Wnt/beta-catenin signalling in prostate cancer. Nat Rev Urolpl_PL
dc.referencesChen Y, Li J, Yu X, Li S, Zhang X, et al. (2013) APC gene hypermethylation and prostate cancer: a systematic review and meta-analysis. Eur J Hum Genet 21: 929–935. doi: 10.1038/ejhg.2012.281pl_PL
dc.referencesJeronimo C, Bastian PJ, Bjartell A, Carbone GM, Catto JW, et al. (2011) Epigenetics in prostate cancer: biologic and clinical relevance. Eur Urol 60: 753–766. doi: 10.1016/j.eururo.2011.06.035pl_PL
dc.referencesVoeller HJ, Truica CI, Gelmann EP (1998) Beta-catenin mutations in human prostate cancer. Cancer Res 58: 2520–2523pl_PL
dc.referencesBjerke GA, Yang CS, Frierson HF, Paschal BM, Wotton D (2013) Activation of Akt signaling in prostate induces a TGFbeta-mediated restraint on cancer progression and metastasis. Oncogenepl_PL
dc.referencesDing Z, Wu CJ, Chu GC, Xiao Y, Ho D, et al. (2011) SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 470: 269–273. doi: 10.1038/nature09677pl_PL
dc.referencesPearson HB, Phesse TJ, Clarke AR (2009) K-ras and Wnt signaling synergize to accelerate prostate tumorigenesis in the mouse. Cancer Res 69: 94–101. doi: 10.1158/0008-5472.can-08-2895pl_PL
dc.referencesYu X, Wang Y, Jiang M, Bierie B, Roy-Burman P, et al. (2009) Activation of beta-Catenin in mouse prostate causes HGPIN and continuous prostate growth after castration. Prostate 69: 249–262. doi: 10.1002/pros.20877pl_PL
dc.referencesBruxvoort KJ, Charbonneau HM, Giambernardi TA, Goolsby JC, Qian CN, et al. (2007) Inactivation of Apc in the mouse prostate causes prostate carcinoma. Cancer Res 67: 2490–2496. doi: 10.1158/0008-5472.can-06-3028pl_PL
dc.referencesWu X, Wu J, Huang J, Powell WC, Zhang J, et al. (2001) Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech Dev 101: 61–69. doi: 10.1016/s0925-4773(00)00551-7pl_PL
dc.referencesTu WH, Thomas TZ, Masumori N, Bhowmick NA, Gorska AE, et al. (2003) The loss of TGF-beta signaling promotes prostate cancer metastasis. Neoplasia 5: 267–277. doi: 10.1016/s1476-5586(03)80058-1pl_PL
dc.referencesFrancis JC, Thomsen MK, Taketo MM, Swain A (2013) beta-catenin is required for prostate development and cooperates with Pten loss to drive invasive carcinoma. PLoS Genet 9: e1003180. doi: 10.1371/journal.pgen.1003180pl_PL
dc.referencesIttmann M, Huang J, Radaelli E, Martin P, Signoretti S, et al. (2013) Animal models of human prostate cancer: the consensus report of the New York meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee. Cancer Res 73: 2718–2736. doi: 10.1158/0008-5472.can-12-4213pl_PL
dc.referencesPienta KJ, Abate-Shen C, Agus DB, Attar RM, Chung LW, et al. (2008) The current state of preclinical prostate cancer animal models. Prostate 68: 629–639. doi: 10.1002/pros.20726pl_PL
dc.referencesRoy-Burman P, Wu H, Powell WC, Hagenkord J, Cohen MB (2004) Genetically defined mouse models that mimic natural aspects of human prostate cancer development. Endocr Relat Cancer 11: 225–254. doi: 10.1677/erc.0.0110225pl_PL
dc.referencesKim J, Roh M, Doubinskaia I, Algarroba GN, Eltoum IE, et al. (2012) A mouse model of heterogeneous, c-MYC-initiated prostate cancer with loss of Pten and p53. Oncogene 31: 322–332. doi: 10.1038/onc.2011.236pl_PL
dc.referencesFine SW (2012) Variants and unusual patterns of prostate cancer: clinicopathologic and differential diagnostic considerations. Adv Anat Pathol 19: 204–216. doi: 10.1097/pap.0b013e31825c6b92pl_PL
dc.referencesMassague J (2008) TGFbeta in Cancer. Cell 134: 215–230. doi: 10.1016/j.cell.2008.07.001pl_PL
dc.referencesCheung KJ, Gabrielson E, Werb Z, Ewald AJ (2013) Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155: 1639–1651. doi: 10.1016/j.cell.2013.11.029pl_PL
dc.referencesFriedl P, Locker J, Sahai E, Segall JE (2012) Classifying collective cancer cell invasion. Nat Cell Biol 14: 777–783. doi: 10.1038/ncb2548pl_PL
dc.referencesWang H, Xu Y, Fang Z, Chen S, Balk SP, et al. (2012) Doxycycline regulated induction of AKT in murine prostate drives proliferation independently of p27 cyclin dependent kinase inhibitor downregulation. PLoS One 7: e41330. doi: 10.1371/journal.pone.0041330pl_PL
dc.referencesJakel H, Peschel I, Kunze C, Weinl C, Hengst L (2012) Regulation of p27 (Kip1) by mitogen-induced tyrosine phosphorylation. Cell Cycle 11: 1910–1917. doi: 10.4161/cc.19957pl_PL
dc.referencesRodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192: 547–556. doi: 10.1083/jcb.201009094pl_PL
dc.referencesMajumder PK, Grisanzio C, O'Connell F, Barry M, Brito JM, et al. (2008) A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression. Cancer Cell 14: 146–155. doi: 10.1016/j.ccr.2008.06.002pl_PL
dc.referencesChytil A, Magnuson MA, Wright CV, Moses HL (2002) Conditional inactivation of the TGF-beta type II receptor using Cre:Lox. Genesis 32: 73–75. doi: 10.1002/gene.10046pl_PL
dc.referencesKuraguchi M, Wang XP, Bronson RT, Rothenberg R, Ohene-Baah NY, et al. (2006) Adenomatous polyposis coli (APC) is required for normal development of skin and thymus. PLoS Genet 2: e146. doi: 10.1371/journal.pgen.0020146.eorpl_PL
dc.referencesSuzuki A, Yamaguchi MT, Ohteki T, Sasaki T, Kaisho T, et al. (2001) T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 14: 523–534. doi: 10.1016/s1074-7613(01)00134-0pl_PL
dc.referencesTruett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, et al.. (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29: 52, 54pl_PL
dc.referencesBartholin L, Melhuish TA, Powers SE, Goddard-Leon S, Treilleux I, et al. (2008) Maternal Tgif is required for vascularization of the embryonic placenta. Dev Biol 319: 285–297. doi: 10.1016/j.ydbio.2008.04.027pl_PL
dc.referencesGalgano MT, Conaway M, Spencer AM, Paschal BM, Frierson HF Jr (2009) PRK1 distribution in normal tissues and carcinomas: overexpression and activation in ovarian serous carcinoma. Hum Pathol 40: 1434–1440pl_PL
dc.referencesPowers SE, Taniguchi K, Yen W, Melhuish TA, Shen J, et al. (2010) Tgif1 and Tgif2 regulate Nodal signaling and are required for gastrulation. Development 137: 249–259. doi: 10.1242/dev.040782pl_PL
dc.referencesTaniguchi K, Anderson AE, Sutherland AE, Wotton D (2012) Loss of Tgif function causes holoprosencephaly by disrupting the Shh signaling pathway. PLoS Genet 8: e1002524. doi: 10.1371/journal.pgen.1002524pl_PL
dc.contributor.authorEmaildw2p@virginia.edupl_PL
dc.identifier.doi10.1371/journal.pone.0092800
dc.relation.volume9pl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa 3.0 Polska