dc.contributor.author | Soboń, Adrian | |
dc.contributor.author | Szewczyk, Rafał | |
dc.contributor.author | Długoński, Jerzy | |
dc.date.accessioned | 2015-12-18T12:48:26Z | |
dc.date.available | 2015-12-18T12:48:26Z | |
dc.date.issued | 2016-02 | |
dc.identifier.citation | Soboń A., Szewczyk R., Długoński J. Tributyltin (TBT) biodegradation induces oxidative stress of Cunninghamella echinulata. International Biodeterioration & Biodegradation (2016) 107:92-101 | pl_PL |
dc.identifier.issn | 1879-0208 | |
dc.identifier.uri | http://hdl.handle.net/11089/15762 | |
dc.description.abstract | Tributyltin (TBT) is one of the most deleterious compounds introduced into natural environment by humans. The ability of Cunninghamella echinulata to degrade tributyltin (TBT) (5 mg l-1) as well as the effect of the xenobiotic on fungal amino acids composition and proteins profile were examined. C. echinulata removed 91% of the initial biocide concentration and formed less hazardous compounds dibutyltin (DBT) and monobutyltin (MBT). Moreover, the fungus produced a hydroxylated metabolite (TBTOH), in which the hydroxyl group was bound directly to the tin atom. Proteomics analysis showed that in the presence of TBT, the abundances of 22 protein bands were changed and the unique overexpressions of peroxiredoxin and nuclease enzymes were observed. Determination of free amino acids showed significant changes in the amounts of 19 from 23 detected metabolites. A parallel increase in the level of selected amino acids such as betaine, alanine, aminoisobutyrate or proline and peroxiredoxin enzyme in TBT-containing cultures revealed that TBT induced oxidative stress in the examined fungus. | pl_PL |
dc.description.sponsorship | National Science Centre, Poland (Project No. UMO-2014/13/N/NZ9/00878). | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Elsevier Science Limited | pl_PL |
dc.relation.ispartofseries | International Biodeterioration & Biodegradation;107 | |
dc.subject | fungi | pl_PL |
dc.subject | tributyltin | pl_PL |
dc.subject | biodegradation | pl_PL |
dc.subject | lc-ms/ms | pl_PL |
dc.subject | proteomics | pl_PL |
dc.subject | metabolomics | pl_PL |
dc.subject | amino acids | pl_PL |
dc.subject | oxidative stress | pl_PL |
dc.subject | ROS | pl_PL |
dc.title | Tributyltin (TBT) biodegradation induces oxidative stress of Cunninghamella echinulata | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 92-101 | pl_PL |
dc.contributor.authorAffiliation | Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland | pl_PL |
dc.references | Antizar-Ladislao, B., 2008. Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environ. Int. 34, 292-308 | pl_PL |
dc.references | Asha, S., Vidyavathi, M., 2009. Cunninghamella. A microbial model for drug metabolism studies–A review. Biotechnol. Adv. 27, 16-29 | pl_PL |
dc.references | Ashraf, M., Foolad, M., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59, 206-216 | pl_PL |
dc.references | Banoub, J. H., Miller-Banoub, J., Sheppard, G. V., Hodder, H. J., 2004. Electrospray tandem mass spectrometric measurements of organotin compounds. J. of Spectro. 18, 95-112 | pl_PL |
dc.references | Baxter, C. J., Redestig, H., Schauer, N., Repsilber, D., Patil, K. R., Nielsen, J., Selbig, J., Liu, J., Fernie, A. R., Sweetlove, L. J., 2007. The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiol. 143, 312-325 | pl_PL |
dc.references | Békri, K., Saint-Louis, R., Pelletier, E., 2006. Determination of tributyltin and 4-hydroxybutyldibutyltin chlorides in seawater by liquid chromatography with atmospheric pressure chemical ionization-mass spectrometry. Anal. Chim. Acta 578, 203-212 | pl_PL |
dc.references | Bender, A., Hajieva, P., Moosmann, B., 2008. Adaptive antioxidant methionine accumulation in respiratory chain complexes explains the use of a deviant genetic code in mitochondria. Proc. Natl. Acad. Sci. U.S.A. 105, 16496-16501 | pl_PL |
dc.references | Bernat, P., Długoński, J., 2002. Degradation of tributyltin by the filamentous fungus Cunninghamella elegans, with involvement of cytochrome P-450. Biotechnol. Lett. 24, 1971-1974 | pl_PL |
dc.references | Bernat, P., Długoński, J., 2007. Tributyltin chloride interactions with fatty acids composition and degradation ability of the filamentous fungus Cunninghamella elegans. Int. Biodeterior. Biodegrad. 60, 133-136 | pl_PL |
dc.references | Bernat, P., Długoński, J., 2009a. Isolation of Streptomyces sp. strain capable of butyltin compounds degradation with high efficiency. J. Hazard. Mater. 171, 660-664 | pl_PL |
dc.references | Bernat, P., Długoński, J., 2012. Comparative study of fatty acids composition during cortexolone hydroxylation and tributyltin chloride (TBT) degradation in the filamentous fungus Cunninghamella elegans. Int. Biodeterior. Biodegrad. 74, 1-6 | pl_PL |
dc.references | Bernat, P., Szewczyk, R., Krupiński, M., Długoński, J., 2013. Butyltins degradation by Cunninghamella elegans and Cochliobolus lunatus co-culture. J. Hazard. Mater. 246, 277-282 | pl_PL |
dc.references | Bernat, P., Gajewska, E., Szewczyk, R., Słaba, M., Długoński, J., 2014a. Tributyltin (TBT) induces oxidative stress and modifies lipid profile in the filamentous fungus Cunninghamella elegans. Environ. Sci. Pollut. R. 21, 4228-4235 | pl_PL |
dc.references | Bernat, P., Siewiera, P., Soboń, A., Długoński, J., 2014b. Phospholipids and protein adaptation of Pseudomonas sp. to the xenoestrogen tributyltin chloride (TBT). World J. Microbiol. Biotechnol. 30, 2343-2350 | pl_PL |
dc.references | Bundy, J. G., Davey, M. P., Viant, M. R., 2009. Environmental metabolomics: a critical review and future perspectives. Metabolomics 5, 3-21 | pl_PL |
dc.references | Büttner, S., Eisenberg, T., Carmona-Gutierrez, D., Ruli, D., Knauer, H., Ruckenstuhl, C., Sigrist, C., Wissing, S., Kollroser, M., Frohlich, K., Sigrist, S., Madeo, F., 2007. Endonuclease G regulates budding yeast life and death. Mol. Cell. 25, 233-246 | pl_PL |
dc.references | Chantong, B., Kratschmar, D. V., Lister, A., Odermatt, A., 2014. Dibutyltin promotes oxidative stress and increases inflammatory mediators in BV-2 microglia cells. Toxicol. lett. 230, 177-187 | pl_PL |
dc.references | Circu, M. L., Aw, T. Y., 2010. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biol. Med. 48, 749-762 | pl_PL |
dc.references | Cruz, A., Caetano, T., Suzuki, S., Mendo, S., 2007. Aeromonas veronii, a tributyltin (TBT)-degrading bacterium isolated from an estuarine environment, Ria de Aveiro in Portugal. Mar. Environ. Res. 64, 639-650 | pl_PL |
dc.references | Cruz, A., Oliveira, V., Baptista, I., Almeida, A., Cunha, Â., Suzuki, S., Mendo, S., 2012. Effect of tributyltin (TBT) in the metabolic activity of TBT‐resistant and sensitive estuarine bacteria. Environ. Toxicol. 27, 11-17 | pl_PL |
dc.references | Cruz, A., Anselmo, A. M., Suzuki, S., Mendo, S., 2015. Tributyltin (TBT): a review on microbial resistance and degradation. Crit. Rev. Env. Sci. Technol. 45, 970-1006 | pl_PL |
dc.references | Das, K., Roychoudhury, A., 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2, 53 | pl_PL |
dc.references | Desai, C., Pathak, H., Madamwar, D., 2010. Advances in molecular and “-omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresour. Technol. 101, 1558-1569 | pl_PL |
dc.references | Gadd, G. M., 2000. Microbial interactions with tributyltin compounds: detoxification, accumulation, and environmental fate. Sci. Total Environ. 258, 119-127 | pl_PL |
dc.references | Gupta, M., Dwivedi, U. N., Khandelwal, S., 2011. C-Phycocyanin: an effective protective agent against thymic atrophy by tributyltin. Toxicol. lett. 204, 2-11 | pl_PL |
dc.references | Ho, H. C., Shiau, P. F., Liu, F. C., Chung, J. G., Chen, L. Y., 1998. Purification, characterization and complete amino acid sequence of nuclease Cl from Cunninghamella echinulata var. echinulata. Eur. J. Biochem. 256, 112-118 | pl_PL |
dc.references | Ishihara, Y., Kawami, T., Ishida, A., Yamazaki, T., 2012. Tributyltin induces oxidative stress and neuronal injury by inhibiting glutathione S-transferase in rat organotypic hippocampal slice cultures. Neurochem. Int. 60, 782-790 | pl_PL |
dc.references | Ishihara, Y., Shimamoto, N., 2006. Involvement of endonuclease G in nucleosomal DNA fragmentation under sustained endogenous oxidative stress. J. Biol. Chem. 281, 6726-6733 | pl_PL |
dc.references | Jia, X., Zhang, Z., Wang, S., Lin, P., Zou, Z., Huang, B., Wang, Y., 2009. Effects of tributyltin (TBT) on enzyme activity and oxidative stress in hepatopancreas and hemolymph of small abalone, Haliotis diversicolor supertexta. Chin. J. Oceanol. Limnol. 27, 816-824 | pl_PL |
dc.references | Kroll, K., Pähtz, V., Kniemeyer, O., 2014. Elucidating the fungal stress response by proteomics. J. Proteomics 97, 151-163 | pl_PL |
dc.references | Liu, H. G., Wang, Y., Lian, L., Xu, L. H., 2006. Tributyltin induces DNA damage as well as oxidative damage in rats. Environ. Toxicol. 21, 166-171 | pl_PL |
dc.references | Liu, J., Wisniewski, M., Droby, S., Vero, S., Tian, S., Hershkovitz, V., 2011. Glycine betaine improves oxidative stress tolerance and biocontrol efficacy of the antagonistic yeast Cystofilobasidium infirmominiatum. Int. J. Food Microbiol. 146, 76-83 | pl_PL |
dc.references | Marchler-Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., Geer, R.C., He, J., Gwadz, M., Hurwitz, D.I., Lanczycki, C.J., Lu, F., Marchler, G.H., Song, J.S., Thanki, N., Wang, Z., Yamashita, R.A., Zhang, D., Zheng, C., Bryant, S.H., 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43, 222-226 | pl_PL |
dc.references | Matsuda, R., Suzuki, T., Saito, Y., 1993. Metabolism of tri-n-butyltin chloride in male rats. J. Agric. Food. Chem. 41, 489-495 | pl_PL |
dc.references | Mimura, H., Nagata, S., Matsumoto, T., 1994. Concentrations and compositions of internal free amino acids in a halotolerant Brevibacterium sp. in response to salt stress. Biosci. Biotechnol. Biochem 58, 1873-1874 | pl_PL |
dc.references | Morales, M., Martínez-Paz, P., Ozáez, I., Martínez-Guitarte, J. L., Morcillo, G., 2013. DNA damage and transcriptional changes induced by tributyltin (TBT) after short in vivo exposures of Chironomus riparius (Diptera) larvae. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 158, 57-63 | pl_PL |
dc.references | Murphy, C.D., 2015. Drug metabolism in microorganisms. Biotechnol. Lett. 37, 19-28 | pl_PL |
dc.references | Nesci, S., Ventrella, V., Trombetti, F., Pirini, M., Borgatti, A. R., Pagliarani, A., 2011. Tributyltin (TBT) and dibutyltin (DBT) differently inhibit the mitochondrial Mg-ATPase activity in mussel digestive gland. Toxicol. in Vitro 25, 117-124 | pl_PL |
dc.references | Ohhira, S., Enomoto, M., Matsui, H., 2006. Sex difference in the principal cytochrome P-450 for tributyltin metabolism in rats. Toxicol. Appl. Pharmacol. 210, 32-38 | pl_PL |
dc.references | QuEChERS-A Mini-Multiresidue Method for the Analysis of Pesticide Residues in Low-Fat Products, protocol available online at http://quechers.cvua-stuttgart.de | pl_PL |
dc.references | Ramírez‐Molina, C., Burton, L., 2009. Screening strategy for the rapid detection of in vitro generated glutathione conjugates using high‐performance liquid chromatography and low‐resolution mass spectrometry in combination with LightSight® software for data processing. Rapid Commun. Mass Spectrom. 23, 3501-3512 | pl_PL |
dc.references | Rhee, S. G., Kang, S. W., Chang, T. S., Jeong, W., Kim, K., 2001. Peroxiredoxin, a novel family of peroxidases. IUBMB life 52, 35-42 | pl_PL |
dc.references | Shevchenko, A., Tomas, H., Havli, J., Olsen, J. V., Mann, M., 2006. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856-2860 | pl_PL |
dc.references | Song, Y. L., Jing, W. H., Yan, R., Wang, Y. T., 2014. Metabolic characterization of (±)-praeruptorin A in vitro and in vivo by high performance liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometry and time-of-flight mass spectrometry. J. Pharm. Biomed. Anal. 90, 98-110 | pl_PL |
dc.references | Szewczyk, R., Soboń, A., Różalska, S., Dzitko, K., Waidelich, D., Długoński, J., 2014. Intracellular proteome expression during 4-n-nonylphenol biodegradation by the filamentous fungus Metarhizium robertsii. Int. Biodeterior. Biodegrad. 93, 44-53 | pl_PL |
dc.references | Szewczyk, R., Soboń, A., Słaba, M., Długoński, J., 2015. Mechanism study of alachlor biodegradation by Paecilomyces marquandii with proteomic and metabolomic methods. J. Hazard. Mater. 291, 52-64 | pl_PL |
dc.references | Tabb, M. M., Blumberg, B., 2006. New modes of action for endocrine-disrupting chemicals. Mol. Endocrinol. 20, 475-482 | pl_PL |
dc.references | Takagi, H. 2008. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl. Microbiol. Biotechnol. 81, 211-223 | pl_PL |
dc.references | Wei, R., Li, G., Seymour, A. B., 2010. High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. Anal. Chem. 82, 5527-5533 | pl_PL |
dc.references | Zhou, J., Zhu, X. S., Cai, Z. H., 2010. Tributyltin toxicity in abalone (Haliotis diversicolor supertexta) assessed by antioxidant enzyme activity, metabolic response, and histopathology. J. Hazard. Mater. 183, 428-43 | pl_PL |
dc.contributor.authorEmail | rszewcz@biol.uni.lodz.pl | pl_PL |
dc.contributor.authorEmail | jdlugo@biol.uni.lodz.pl | pl_PL |
dc.contributor.authorEmail | asobon@biol.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.1016/j.ibiod.2015.11.013 | |