Show simple item record

dc.contributor.authorSoboń, Adrian
dc.contributor.authorSzewczyk, Rafał
dc.contributor.authorDługoński, Jerzy
dc.date.accessioned2015-12-18T12:48:26Z
dc.date.available2015-12-18T12:48:26Z
dc.date.issued2016-02
dc.identifier.citationSoboń A., Szewczyk R., Długoński J. Tributyltin (TBT) biodegradation induces oxidative stress of Cunninghamella echinulata. International Biodeterioration & Biodegradation (2016) 107:92-101pl_PL
dc.identifier.issn1879-0208
dc.identifier.urihttp://hdl.handle.net/11089/15762
dc.description.abstractTributyltin (TBT) is one of the most deleterious compounds introduced into natural environment by humans. The ability of Cunninghamella echinulata to degrade tributyltin (TBT) (5 mg l-1) as well as the effect of the xenobiotic on fungal amino acids composition and proteins profile were examined. C. echinulata removed 91% of the initial biocide concentration and formed less hazardous compounds dibutyltin (DBT) and monobutyltin (MBT). Moreover, the fungus produced a hydroxylated metabolite (TBTOH), in which the hydroxyl group was bound directly to the tin atom. Proteomics analysis showed that in the presence of TBT, the abundances of 22 protein bands were changed and the unique overexpressions of peroxiredoxin and nuclease enzymes were observed. Determination of free amino acids showed significant changes in the amounts of 19 from 23 detected metabolites. A parallel increase in the level of selected amino acids such as betaine, alanine, aminoisobutyrate or proline and peroxiredoxin enzyme in TBT-containing cultures revealed that TBT induced oxidative stress in the examined fungus.pl_PL
dc.description.sponsorshipNational Science Centre, Poland (Project No. UMO-2014/13/N/NZ9/00878).pl_PL
dc.language.isoenpl_PL
dc.publisherElsevier Science Limitedpl_PL
dc.relation.ispartofseriesInternational Biodeterioration & Biodegradation;107
dc.subjectfungipl_PL
dc.subjecttributyltinpl_PL
dc.subjectbiodegradationpl_PL
dc.subjectlc-ms/mspl_PL
dc.subjectproteomicspl_PL
dc.subjectmetabolomicspl_PL
dc.subjectamino acidspl_PL
dc.subjectoxidative stresspl_PL
dc.subjectROSpl_PL
dc.titleTributyltin (TBT) biodegradation induces oxidative stress of Cunninghamella echinulatapl_PL
dc.typeArticlepl_PL
dc.page.number92-101pl_PL
dc.contributor.authorAffiliationDepartment of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Polandpl_PL
dc.referencesAntizar-Ladislao, B., 2008. Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environ. Int. 34, 292-308pl_PL
dc.referencesAsha, S., Vidyavathi, M., 2009. Cunninghamella. A microbial model for drug metabolism studies–A review. Biotechnol. Adv. 27, 16-29pl_PL
dc.referencesAshraf, M., Foolad, M., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59, 206-216pl_PL
dc.referencesBanoub, J. H., Miller-Banoub, J., Sheppard, G. V., Hodder, H. J., 2004. Electrospray tandem mass spectrometric measurements of organotin compounds. J. of Spectro. 18, 95-112pl_PL
dc.referencesBaxter, C. J., Redestig, H., Schauer, N., Repsilber, D., Patil, K. R., Nielsen, J., Selbig, J., Liu, J., Fernie, A. R., Sweetlove, L. J., 2007. The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiol. 143, 312-325pl_PL
dc.referencesBékri, K., Saint-Louis, R., Pelletier, E., 2006. Determination of tributyltin and 4-hydroxybutyldibutyltin chlorides in seawater by liquid chromatography with atmospheric pressure chemical ionization-mass spectrometry. Anal. Chim. Acta 578, 203-212pl_PL
dc.referencesBender, A., Hajieva, P., Moosmann, B., 2008. Adaptive antioxidant methionine accumulation in respiratory chain complexes explains the use of a deviant genetic code in mitochondria. Proc. Natl. Acad. Sci. U.S.A. 105, 16496-16501pl_PL
dc.referencesBernat, P., Długoński, J., 2002. Degradation of tributyltin by the filamentous fungus Cunninghamella elegans, with involvement of cytochrome P-450. Biotechnol. Lett. 24, 1971-1974pl_PL
dc.referencesBernat, P., Długoński, J., 2007. Tributyltin chloride interactions with fatty acids composition and degradation ability of the filamentous fungus Cunninghamella elegans. Int. Biodeterior. Biodegrad. 60, 133-136pl_PL
dc.referencesBernat, P., Długoński, J., 2009a. Isolation of Streptomyces sp. strain capable of butyltin compounds degradation with high efficiency. J. Hazard. Mater. 171, 660-664pl_PL
dc.referencesBernat, P., Długoński, J., 2012. Comparative study of fatty acids composition during cortexolone hydroxylation and tributyltin chloride (TBT) degradation in the filamentous fungus Cunninghamella elegans. Int. Biodeterior. Biodegrad. 74, 1-6pl_PL
dc.referencesBernat, P., Szewczyk, R., Krupiński, M., Długoński, J., 2013. Butyltins degradation by Cunninghamella elegans and Cochliobolus lunatus co-culture. J. Hazard. Mater. 246, 277-282pl_PL
dc.referencesBernat, P., Gajewska, E., Szewczyk, R., Słaba, M., Długoński, J., 2014a. Tributyltin (TBT) induces oxidative stress and modifies lipid profile in the filamentous fungus Cunninghamella elegans. Environ. Sci. Pollut. R. 21, 4228-4235pl_PL
dc.referencesBernat, P., Siewiera, P., Soboń, A., Długoński, J., 2014b. Phospholipids and protein adaptation of Pseudomonas sp. to the xenoestrogen tributyltin chloride (TBT). World J. Microbiol. Biotechnol. 30, 2343-2350pl_PL
dc.referencesBundy, J. G., Davey, M. P., Viant, M. R., 2009. Environmental metabolomics: a critical review and future perspectives. Metabolomics 5, 3-21pl_PL
dc.referencesBüttner, S., Eisenberg, T., Carmona-Gutierrez, D., Ruli, D., Knauer, H., Ruckenstuhl, C., Sigrist, C., Wissing, S., Kollroser, M., Frohlich, K., Sigrist, S., Madeo, F., 2007. Endonuclease G regulates budding yeast life and death. Mol. Cell. 25, 233-246pl_PL
dc.referencesChantong, B., Kratschmar, D. V., Lister, A., Odermatt, A., 2014. Dibutyltin promotes oxidative stress and increases inflammatory mediators in BV-2 microglia cells. Toxicol. lett. 230, 177-187pl_PL
dc.referencesCircu, M. L., Aw, T. Y., 2010. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biol. Med. 48, 749-762pl_PL
dc.referencesCruz, A., Caetano, T., Suzuki, S., Mendo, S., 2007. Aeromonas veronii, a tributyltin (TBT)-degrading bacterium isolated from an estuarine environment, Ria de Aveiro in Portugal. Mar. Environ. Res. 64, 639-650pl_PL
dc.referencesCruz, A., Oliveira, V., Baptista, I., Almeida, A., Cunha, Â., Suzuki, S., Mendo, S., 2012. Effect of tributyltin (TBT) in the metabolic activity of TBT‐resistant and sensitive estuarine bacteria. Environ. Toxicol. 27, 11-17pl_PL
dc.referencesCruz, A., Anselmo, A. M., Suzuki, S., Mendo, S., 2015. Tributyltin (TBT): a review on microbial resistance and degradation. Crit. Rev. Env. Sci. Technol. 45, 970-1006pl_PL
dc.referencesDas, K., Roychoudhury, A., 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2, 53pl_PL
dc.referencesDesai, C., Pathak, H., Madamwar, D., 2010. Advances in molecular and “-omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresour. Technol. 101, 1558-1569pl_PL
dc.referencesGadd, G. M., 2000. Microbial interactions with tributyltin compounds: detoxification, accumulation, and environmental fate. Sci. Total Environ. 258, 119-127pl_PL
dc.referencesGupta, M., Dwivedi, U. N., Khandelwal, S., 2011. C-Phycocyanin: an effective protective agent against thymic atrophy by tributyltin. Toxicol. lett. 204, 2-11pl_PL
dc.referencesHo, H. C., Shiau, P. F., Liu, F. C., Chung, J. G., Chen, L. Y., 1998. Purification, characterization and complete amino acid sequence of nuclease Cl from Cunninghamella echinulata var. echinulata. Eur. J. Biochem. 256, 112-118pl_PL
dc.referencesIshihara, Y., Kawami, T., Ishida, A., Yamazaki, T., 2012. Tributyltin induces oxidative stress and neuronal injury by inhibiting glutathione S-transferase in rat organotypic hippocampal slice cultures. Neurochem. Int. 60, 782-790pl_PL
dc.referencesIshihara, Y., Shimamoto, N., 2006. Involvement of endonuclease G in nucleosomal DNA fragmentation under sustained endogenous oxidative stress. J. Biol. Chem. 281, 6726-6733pl_PL
dc.referencesJia, X., Zhang, Z., Wang, S., Lin, P., Zou, Z., Huang, B., Wang, Y., 2009. Effects of tributyltin (TBT) on enzyme activity and oxidative stress in hepatopancreas and hemolymph of small abalone, Haliotis diversicolor supertexta. Chin. J. Oceanol. Limnol. 27, 816-824pl_PL
dc.referencesKroll, K., Pähtz, V., Kniemeyer, O., 2014. Elucidating the fungal stress response by proteomics. J. Proteomics 97, 151-163pl_PL
dc.referencesLiu, H. G., Wang, Y., Lian, L., Xu, L. H., 2006. Tributyltin induces DNA damage as well as oxidative damage in rats. Environ. Toxicol. 21, 166-171pl_PL
dc.referencesLiu, J., Wisniewski, M., Droby, S., Vero, S., Tian, S., Hershkovitz, V., 2011. Glycine betaine improves oxidative stress tolerance and biocontrol efficacy of the antagonistic yeast Cystofilobasidium infirmominiatum. Int. J. Food Microbiol. 146, 76-83pl_PL
dc.referencesMarchler-Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., Geer, R.C., He, J., Gwadz, M., Hurwitz, D.I., Lanczycki, C.J., Lu, F., Marchler, G.H., Song, J.S., Thanki, N., Wang, Z., Yamashita, R.A., Zhang, D., Zheng, C., Bryant, S.H., 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43, 222-226pl_PL
dc.referencesMatsuda, R., Suzuki, T., Saito, Y., 1993. Metabolism of tri-n-butyltin chloride in male rats. J. Agric. Food. Chem. 41, 489-495pl_PL
dc.referencesMimura, H., Nagata, S., Matsumoto, T., 1994. Concentrations and compositions of internal free amino acids in a halotolerant Brevibacterium sp. in response to salt stress. Biosci. Biotechnol. Biochem 58, 1873-1874pl_PL
dc.referencesMorales, M., Martínez-Paz, P., Ozáez, I., Martínez-Guitarte, J. L., Morcillo, G., 2013. DNA damage and transcriptional changes induced by tributyltin (TBT) after short in vivo exposures of Chironomus riparius (Diptera) larvae. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 158, 57-63pl_PL
dc.referencesMurphy, C.D., 2015. Drug metabolism in microorganisms. Biotechnol. Lett. 37, 19-28pl_PL
dc.referencesNesci, S., Ventrella, V., Trombetti, F., Pirini, M., Borgatti, A. R., Pagliarani, A., 2011. Tributyltin (TBT) and dibutyltin (DBT) differently inhibit the mitochondrial Mg-ATPase activity in mussel digestive gland. Toxicol. in Vitro 25, 117-124pl_PL
dc.referencesOhhira, S., Enomoto, M., Matsui, H., 2006. Sex difference in the principal cytochrome P-450 for tributyltin metabolism in rats. Toxicol. Appl. Pharmacol. 210, 32-38pl_PL
dc.referencesQuEChERS-A Mini-Multiresidue Method for the Analysis of Pesticide Residues in Low-Fat Products, protocol available online at http://quechers.cvua-stuttgart.depl_PL
dc.referencesRamírez‐Molina, C., Burton, L., 2009. Screening strategy for the rapid detection of in vitro generated glutathione conjugates using high‐performance liquid chromatography and low‐resolution mass spectrometry in combination with LightSight® software for data processing. Rapid Commun. Mass Spectrom. 23, 3501-3512pl_PL
dc.referencesRhee, S. G., Kang, S. W., Chang, T. S., Jeong, W., Kim, K., 2001. Peroxiredoxin, a novel family of peroxidases. IUBMB life 52, 35-42pl_PL
dc.referencesShevchenko, A., Tomas, H., Havli, J., Olsen, J. V., Mann, M., 2006. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856-2860pl_PL
dc.referencesSong, Y. L., Jing, W. H., Yan, R., Wang, Y. T., 2014. Metabolic characterization of (±)-praeruptorin A in vitro and in vivo by high performance liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometry and time-of-flight mass spectrometry. J. Pharm. Biomed. Anal. 90, 98-110pl_PL
dc.referencesSzewczyk, R., Soboń, A., Różalska, S., Dzitko, K., Waidelich, D., Długoński, J., 2014. Intracellular proteome expression during 4-n-nonylphenol biodegradation by the filamentous fungus Metarhizium robertsii. Int. Biodeterior. Biodegrad. 93, 44-53pl_PL
dc.referencesSzewczyk, R., Soboń, A., Słaba, M., Długoński, J., 2015. Mechanism study of alachlor biodegradation by Paecilomyces marquandii with proteomic and metabolomic methods. J. Hazard. Mater. 291, 52-64pl_PL
dc.referencesTabb, M. M., Blumberg, B., 2006. New modes of action for endocrine-disrupting chemicals. Mol. Endocrinol. 20, 475-482pl_PL
dc.referencesTakagi, H. 2008. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl. Microbiol. Biotechnol. 81, 211-223pl_PL
dc.referencesWei, R., Li, G., Seymour, A. B., 2010. High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. Anal. Chem. 82, 5527-5533pl_PL
dc.referencesZhou, J., Zhu, X. S., Cai, Z. H., 2010. Tributyltin toxicity in abalone (Haliotis diversicolor supertexta) assessed by antioxidant enzyme activity, metabolic response, and histopathology. J. Hazard. Mater. 183, 428-43pl_PL
dc.contributor.authorEmailrszewcz@biol.uni.lodz.plpl_PL
dc.contributor.authorEmailjdlugo@biol.uni.lodz.plpl_PL
dc.contributor.authorEmailasobon@biol.uni.lodz.plpl_PL
dc.identifier.doi10.1016/j.ibiod.2015.11.013


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record