dc.contributor.author | Łuczak, Andrzej | |
dc.date.accessioned | 2015-09-10T10:38:51Z | |
dc.date.available | 2015-09-10T10:38:51Z | |
dc.date.issued | 2014-06-19 | |
dc.identifier.issn | 1572-9281 | |
dc.identifier.uri | http://hdl.handle.net/11089/11757 | |
dc.description.abstract | We investigate cloning in the general operator algebra framework in arbitrary
dimension assuming only positivity instead of strong positivity of the cloning
operation, generalizing thus results obtained so far under that stronger assumption.
The weaker positivity assumption turns out quite natural when considering cloning in
the general C∗-algebra framework. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer Basel | pl_PL |
dc.relation.ispartofseries | Positivity;2015 | |
dc.rights | Uznanie autorstwa 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/pl/ | * |
dc.subject | Cloning states | pl_PL |
dc.subject | Positive maps | pl_PL |
dc.subject | von Neumann algebras | pl_PL |
dc.title | Cloning by positive maps in von Neumann algebras | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 317–332 | pl_PL |
dc.contributor.authorAffiliation | Łuczak Andrzej, Faculty of Mathematics and Computer Science, Łódź University | pl_PL |
dc.references | Barnum, H., Barrett, J., Leifer,M.,Wilce, A.: Cloning and broadcasting in generic probability models. Preprint arXiv: quant-ph/0611295 | pl_PL |
dc.references | Barnum, H., Barrett, J., Leifer, M., Wilce, A.: Generalized no-broadcasting theorem. Phys. Rev. Lett. 99, 240501 (2007) | pl_PL |
dc.references | Barnum, H., Caves, C.M., Fuchs, C.A., Jozsa, R., Schumacher, B.: Noncommutingmixed states cannot be broadcast Phys. Rev. Lett. 76(15), 2818–2821 (1996) | pl_PL |
dc.references | Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechnics I. Springer, Berlin (1987) | pl_PL |
dc.references | Dieks, D.: Communication by EPR devices. Phys. Lett. A 92(6), 271–272 (1982) | pl_PL |
dc.references | Kaniowski, K., Lubnauer, K., Łuczak, A.: Cloning and broadcasting in von Neumann algebras. preprint | pl_PL |
dc.references | Kaniowski, K., Lubnauer, K., Łuczak, A.: Cloning in C∗-algebras. preprint | pl_PL |
dc.references | Lindblad, G.: A general no-cloning theorem. Lett. Math. Phys. 47, 189–196 (1999) | pl_PL |
dc.references | Łuczak, A.: Ergodic projection for quantum dynamical semigroups. Int. J. Theor. Phys. 34, 1533–1540 (1995) | pl_PL |
dc.references | Łuczak, A.: Mixing and asymptotic properties of Markov semigroups on vonNeumann algebras. Math. Z. 235, 615–626 (2000) | pl_PL |
dc.references | Størmer, E.: Positive linear maps of operator algebras. Acta Math. 110, 233–278 (1963) | pl_PL |
dc.references | Takesaki, M.: Theory of Operator Algebras I. Encyclopaedia of Mathematical Sciences, vol. 124. Springer, Berlin (2001) | pl_PL |
dc.references | Thomsen, K.E.: Invariant states for positive operator semigroups. Stud. Math. 81, 285–291 (1985) | pl_PL |
dc.references | Wooters, W.K., Zurek, W.H.: A single quantum state cannot be cloned. Nature 299, 802 (1982) | pl_PL |
dc.contributor.authorEmail | anluczak@math.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.1007/s11117-014-0297-1 | |
dc.relation.volume | 19 | pl_PL |