dc.contributor.author | Plebaniak, Robert | |
dc.contributor.author | Gabeleh, Moosa | |
dc.date.accessioned | 2015-07-23T12:38:40Z | |
dc.date.available | 2015-07-23T12:38:40Z | |
dc.date.issued | 2015-04-09 | |
dc.identifier.issn | 1687-1812 | |
dc.identifier.uri | http://hdl.handle.net/11089/11165 | |
dc.description.abstract | A new class of multivalued non-self-mappings, called SK-contractions with respect to
b-generalized pseudodistances, is introduced and used to investigate the existence of
best proximity points by using an appropriate geometric property. Some new fixed
point results in b-metric spaces are also obtained. Examples are given to support the
usability of our main results | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer Basel | pl_PL |
dc.relation.ispartofseries | Fixed Point Theory and Applications;2015:50 | |
dc.rights | Uznanie autorstwa 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/pl/ | * |
dc.subject | best proximity point | pl_PL |
dc.subject | fixed point | pl_PL |
dc.subject | SK-contraction | pl_PL |
dc.subject | b-generalized pseudodistances | pl_PL |
dc.title | Multivalued SK-contractions with respect to b-generalized pseudodistances | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 1-20 | pl_PL |
dc.contributor.authorAffiliation | Plebaniak Robert, University of Łódź Department of Nonlinear Analysis | pl_PL |
dc.contributor.authorAffiliation | Gabeleh Moosa, Ayatollah Boroujerdi University, Department of Mathematics | pl_PL |
dc.references | Khamsi, MA, Kirk, WA: An Introduction to Metric Spaces and Fixed Point Theory. Pure and Applied Mathematics. Wiley-Interscience, New York (2001) | pl_PL |
dc.references | Kannan, R: Some results on fixed points. Am. Math. Mon. 76(4), 405-408 (1969) | pl_PL |
dc.references | Reich, S: Kannan’s fixed point theorem. Boll. Unione Mat. Ital. 4, 1-11 (1972) | pl_PL |
dc.references | Reich, S: Some remarks concerning contraction mappings. Can. Math. Bull. 14, 121-124 (1971) | pl_PL |
dc.references | Reich, S: Fixed points of contractive functions. Boll. Unione Mat. Ital. 5, 26-42 (1972) | pl_PL |
dc.references | Kikkawa, M, Suzuki, T: Some similarity between contractions and Kannan mappings. Fixed Point Theory Appl. 2010, Article ID 649749 (2010) | pl_PL |
dc.references | Damjanovic, B, Doric, D: Multivalued generalizations of the Kannan fixed point theorem. Filomat 25, 125-131 (2011) | pl_PL |
dc.references | Kirk, WA, Reich, S, Veeramani, P: Proximinal retracts and best proximity pair theorems. Numer. Funct. Anal. Optim. 24, 851-862 (2003) | pl_PL |
dc.references | Abkar, A, Gabeleh, M: The existence of best proximity points for multivalued non-self-mappings. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 107, 319-325 (2013) | pl_PL |
dc.references | Gabeleh, M: Best proximity points: global minimization of multivalued non-self mappings. Optim. Lett. 8, 1101-1112 (2014) | pl_PL |
dc.references | Gabeleh, M: Best proximity point theorems for single- and set-valued non-self mappings. Acta Math. Sci., Ser. B 34, 1661-1669 (2014) | pl_PL |
dc.references | Wlodarczyk, K, Plebaniak, R, Banach, A: Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 70, 3332-3342 (2009) | pl_PL |
dc.references | Wlodarczyk, K, Plebaniak, R, Banach, A: Erratum to: ‘Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces’. Nonlinear Anal. 71, 3583-3586 (2009) | pl_PL |
dc.references | Sankar Raj, V: A best proximity point theorem for weakly contractive non-self-mappings. Nonlinear Anal. 74, 4804-4808 (2011) | pl_PL |
dc.references | Gabeleh, M: Global optimal solutions of non-self mappings. Sci. Bull. ‘Politeh.’ Univ. Buchar., Ser. A, Appl. Math. Phys. 75, 67-74 (2013) | pl_PL |
dc.references | Abkar, A, Gabeleh, M: Global optimal solutions of noncyclic mappings in metric spaces. J. Optim. Theory Appl. 153, 298-305 (2012) | pl_PL |
dc.references | Gabeleh, M, Shahzad, N: Existence and uniqueness of a solution for some nonlinear programming problems. Mediterr. J. Math. 12, 133-146 (2015). doi:10.1007/s00009-013-0380-z | pl_PL |
dc.references | Czerwik, S: Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Univ. Modena 46, 263-276 (1998) | pl_PL |
dc.references | Kirk, WA, Shahzad, N: Fixed Point Theory in Distance Spaces. Springer, New York (2014) | pl_PL |
dc.references | Eldred, AA, Veeramani, P: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323(2), 1001-1006 (2006) | pl_PL |
dc.references | Al-Thagafi, MA, Shahzad, N: Convergence and existence results for best proximity points. Nonlinear Anal. 70(10), 3665-3671 (2009) | pl_PL |
dc.references | Ali, MU, Kamran, T, Shahzad, N: Best proximity point for α-ψ-proximal contractive multimaps. Abstr. Appl. Anal. 2014, Article ID 181598 (2014) | pl_PL |
dc.references | Karpinar, E, Raju Kosuru, GS, Tas, K: Best proximity theorems for Reich type cyclic orbital and Reich type Meir-Keeler contraction maps. J. Nonlinear Anal. Optim. 5(1), 1-10 (2014) | pl_PL |
dc.references | Karpinar, E, Petrusel, G, Tas, K: Best proximity point theorems for KT-types cyclic orbital contraction mappings. Fixed Point Theory 13(2), 537-545 (2012) | pl_PL |
dc.references | Sadiq Basha, S, Shahzad, N: Best proximity point theorems for generalized proximal contractions. Fixed Point Theory Appl. 2012, 42 (2012) | pl_PL |
dc.references | Al-Thagafi, MA, Shahzad, N: Best proximity pairs and equilibrium pairs for Kakutani multimaps. Nonlinear Anal. 70(3), 1209-1216 (2009) | pl_PL |
dc.references | Suzuki, T, Kikkawa, M, Vetro, C: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 71(7-8), 2918-2925 (2009) | pl_PL |
dc.references | Shukla, S: Partial b-metric spaces and fixed point theorems. Mediterr. J. Math. 11, 703-711 (2014) | pl_PL |
dc.references | Plebaniak, R: On best proximity points for set-valued contractions of Nadler type with respect to b-generalized pseudodistances in b-metric spaces. Fixed Point Theory Appl. 2014, 39 (2014) | pl_PL |
dc.references | Kada, O, Suzuki, T, Takahashi, W: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 44(2), 381-391 (1996) | pl_PL |
dc.references | Tataru, D: Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms. J. Math. Anal. Appl. 163(2), 345-392 (1992) | pl_PL |
dc.references | Suzuki, T: Generalized distance and existence theorems in complete metric spaces. J. Math. Anal. Appl. 253(2), 440-458 (2001) | pl_PL |
dc.references | Lin, L-J, Du, W-S: Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces. J. Math. Anal. Appl. 323(1), 360-370 (2006) | pl_PL |
dc.references | Valyi, I: A general maximality principle and a fixed point theorem in uniform space. Period. Math. Hung. 16(2), 127-134 (1985) | pl_PL |
dc.references | Wlodarczyk, K, Plebaniak, R: Maximality principle and general results of Ekeland and Caristi types without lower semicontinuity assumptions in cone uniform spaces with generalized pseudodistances. Fixed Point Theory Appl. 2010, Article ID 175453 (2010) | pl_PL |
dc.references | Wlodarczyk, K, Plebaniak, R: Contractions of Banach, Tarafdar, Meir-Keeler, ´ Ciri´c-Jachymski-Matkowski and Suzuki types and fixed points in uniform spaces with generalized pseudodistances. J. Math. Anal. Appl. 404(2), 338-350 (2013) | pl_PL |
dc.contributor.authorEmail | robpleb@math.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.1186/s13663-015-0300-y | |